Com a finalidade de adaptar a tecnologia de secagem com sistemas combinados para o café, foi projetado, construído e avaliado um sistema em que ocafé despolpado, pré-secado em terreiro, passava por uma secagem intermediária em um secador experimental de altas temperaturas e fluxos contracorrentes/concorrentes e, em seguida, era transportado para um sistema em
baixas temperaturas, composto por um silo-secador, no qual era seco até atingir o teor de umidade seguro para armazenamento. Foram realizados três testes de secagem, sendo dois com a utilização dos sistemas combinados e um testemunha, com o sistema a altas temperaturas. A temperatura média do ar de secagem foi de 75,3 °C no sistema a altas temperaturas e de 21,4 °C no sistema em baixas temperaturas. A umidade relativa média do ar ambiente durante a realização dos testes de secagem no sistema a baixas temperaturas foi de 46,1%. Os teores de umidade inicial e final do produto foram, respectivamente: 32 e 13 % b.u. para o teste 1, 42 e 14 % b.u. para o teste 2 e 24 e 14% b.u. para o teste 3. Para a avaliação da eficiência energética de secagem dos sistemas, determinaram-se o consumo de combustível (lenha de Eucalyptus grandis) na fornalha e o consumo de energia elétrica dos motores do ventilador, do elevador e da máquina de pré-limpeza, no sistema a altas temperaturas. Já no sistema em baixas temperaturas foi medido o consumo de energia elétrica pelo motor do ventilador. Com base nos resultados obtidos, foi possível observar a maior eficiência energética da secagem com sistemas combinados (5,0 MJ.kg-1 no teste 1 e 3,3 MJ.kg-1 no teste 2) em relação ao sistema de secagem a altas temperaturas (11,2 MJ.kg-1 no teste 3) e concluir que a secagem com sistemas combinados para café é um método viável no que diz respeito ao consumo de energia e à qualidade do produto.
The object of this research work was to adapt the combination of high-temperature and natural-air drying procedures to the drying of washed coffee. To this end, a drying system comprised of a paved terrace, an experimental high-temperature drier and a low-temperature drying bin was designed, constructed and evaluated. The first stage of drying was carried out in the paved terrace, where ripe pulped coffee cherries were allowed to dry using solar energy. The second stage of drying was accomplished in the high-temperature drier comprised of two drying sections: the first drying section consisted of a counterflow chamber, whereas the second one consisted of concurrent flow chamber. Subsequently, natural-air drying in a separate bin was used to complement the drying by further reducing the moisture content of the product to safe moisture levels for long-term storage.
Three drying tests were carried out: two using the combination drying system, and one, for comparison purposes, was accomplished using the paved terrace and the high-temperature drier alone. The initial and final moisture contents of the product for tests 1, 2, and 3 were, 32 and 13% w.b., 42 and 14% w.b., 24 and 14% w.b., respectively. Initial moisture content, in this context, corresponds to the moisture content of the product at the beginning of the high-temperature drying process. Specific energy consumption was evaluated during high-temperature drying by considering the amount of fuel (Eucalyptus grandis) burned in the indirectly heated furnace, and the electric energy used to power the fan, the bucket elevator and the cleaning equipment. Energy consumption in the low-temperature drying system, however, was evaluated by considering only the electric energy used to power the fan attached to the bin. Energy use during solar dying was not considered for calculations. The results indicated that the combination drying system is more energy-efficient than the high-temperature drier alone: Specific energy
consumption for drying tests 1 and 2 were 5.0 and 3.3 MJ kg-1, respectively, whereas, for the high-temperature drying the value obtained was 11.2 MJ kg-1.