Abstract:
O sensoriamento remoto multiespectral apresenta-se como metodologia confiável e viável para auxiliar o produtor na decisão para melhores práticas de manejo, garantindo uma produção agrícola mais eficiente e sustentável. Objetivou-se, com este trabalho, identificar e mapear o estresse em lavoura cafeeira, causado por variáveis bióticas e abióticas, por meio de índices de vegetação derivados de imagens multiespectrais Landsat-5 Thematic Mapper (TM). A malha amostral foi composta por 67 pontos, sendo cada ponto amostral constituído por cinco plantas. As análises de incidência de cercosporiose e de infestação do bicho-mineiro, nas folhas, de pH, matéria orgânica e textura do solo e teores foliares de nutrientes foram realizadas em cada um dos pontos amostrais e correlacionadas com 16 índices de vegetação obtidos de imagens referentes à época das análises. Os índices de vegetação apresentaram distribuição espacial semelhante à distribuição espacial das variáveis agronômicas, na lavoura. Houve correlação positiva dos índices com a infestação do bicho-mineiro e com os teores de silte e argila no solo e concentrações de Mg, Cu, B e Mn nas folhas, e negativa, com a incidência de cercosporiose e com pH e teor de areia do solo. Com base nesses resultados, foi possível mapear e identificar as alterações na reflectância espectral dos cafeeiros, causadas por essas variáveis agronômicas.