SBICafé
Biblioteca do Café

Multitemporal variables for the mapping of coffee cultivation areas

Mostrar registro simples

dc.contributor.author Souza, Carolina Gusmão
dc.contributor.author Arantes, Tássia Borges
dc.contributor.author Carvalho, Luis Marcelo Tavares de
dc.contributor.author Aguiar, Polyanne
dc.date.accessioned 2021-12-06T13:50:42Z
dc.date.available 2021-12-06T13:50:42Z
dc.date.issued 2019
dc.identifier.citation SOUZA, C. G. et al. Multitemporal variables for the mapping of coffee cultivation areas. Pesquisa Agropecuária Brasileira, Brasília, v. 54, p. 1-14, 2019. pt_BR
dc.identifier.issn 1678-3921
dc.identifier.uri https://doi.org/10.1590/S1678-3921. pab2019.v54.00017 pt_BR
dc.identifier.uri http://www.sbicafe.ufv.br/handle/123456789/12918
dc.description.abstract The objective of this work was to propose a new methodology for mapping coffee cropping areas that includes multitemporal data as input parameters in the classification process, by using the Landsat TM NDVI time series, together with an object-oriented classification approach. The algorithm BFAST was used to analyze coffee, pasture, and native vegetation temporal profiles, allied to a geographic object-based image analysis (GEOBIA) for mapping. The following multitemporal variables derived from the R package greenbrown were used for classification: mean, trend, and seasonality. The results showed that coffee, pasture, and native vegetation have different temporal behaviors, which corroborates the use of these data as input variables for mapping. The classifications using temporal variables, associated with spectral data, achieved high-global accuracy rates with 93% hit. When using Only temporal data, ratings also showed a hit percentage above 80% accuracy. Data derived from Landsat TM time series are efficient for mapping coffee cropping areas, reducing confusion between targets and making the classification process more accurate, contributing to a correct characterization and mapping of objects derived from a RapidEye image, with a high spatial solution. pt_BR
dc.format pdf pt_BR
dc.language.iso en pt_BR
dc.publisher Empresa Brasileira de Pesquisa Agropecuária - Embrapa pt_BR
dc.relation.ispartofseries Pesquisa Agropecuária Brasileira;v.54, 2019
dc.rights Open Access pt_BR
dc.subject BFAST pt_BR
dc.subject Classificação pt_BR
dc.subject MODIS pt_BR
dc.subject NDVI pt_BR
dc.subject Sensoriamento remoto pt_BR
dc.subject Pacote greenbrown R pt_BR
dc.subject.classification Cafeicultura::Processos industriais e novos produtos pt_BR
dc.title Multitemporal variables for the mapping of coffee cultivation areas pt_BR
dc.type Artigo pt_BR

Arquivos deste item

Arquivos Tamanho Formato Visualização
Pesq. agropec. bras._v.54_p.1-14_2019.pdf 1.042Mb application/pdf Visualizar/Abrir ou Pre-visualizar

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Buscar em toda a Biblioteca


Sobre o SBICafé

Navegar

Minha conta