ESTIMATION OF BIOPHYSICAL PARAMETERS OF COFFEE FIELDS BASED ON HIGH-RESOLUTION SATELLITE IMAGESO uso de recursos de sensoriamento remoto orbital constitui um grande avanço no levantamento de dados sobre a cafeicultura, sobretudo por seu caráter temporal e baixo custo. Sendo assim, o objetivo do trabalho foi avaliar a utilização da imagem do satélite QUICKBIRD na determinação de parâmetros biofísicos importantes para a cultura cafeeira. Foram utilizados 25 talhões com plantios de café localizados entre os municípios de Ribeirão Corrente, Franca e Cristais Paulista (SP). Os parâmetros biofísicos utilizados foram os espaçamentos entre linhas e plantas, altura, IAF, diâmetro da copa, porcentagem de cobertura vegetal, rugosidade, variedade e biomassa. Foram utilizados valores de refletância real das bandas espectrais do satélite QUICKBIRD e os índices de vegetação NDVI, GVI, SAVI e RVI. A partir desses dados, foram feitas análises de regressão linear e não linear para a geração dos modelos de estimativa. A utilização de modelos de regressão baseados em equações não lineares mostrou-se mais adequado para determinar os parâmetros IAF e a porcentagem de biomassa, importantes como indicativos da produtividade da cultura cafeeira.
Remote sensing data are each time more available and can be used to monitor the vegetal development of main agricultural crops, such as the Arabic coffee in Brazil, since that the relationship between spectral and agronomical data be well known. Therefore, this work had the main objective to assess the use of Quickbird satellite images to estimate biophysical parameters of coffee crop. Test area was composed by 25 coffee fields located between the cities of Ribeirão Corrente, Franca and Cristais Paulista (SP), Brazil, and the biophysical parameters used were row and between plants spacing, plant height, LAI, canopy diameter, percentage of vegetation cover, roughness and biomass. Spectral data were the reflectance of four bands of QUICKBIRD and values of four vegetations indexes (NDVI, GVI, SAVI and RVI) based on the same satellite. All these data were analyzed using linear and nonlinear regression methods to generate estimation models of biophysical parameters. The use of regression models based on nonlinear equations was more appropriate to estimate parameters such as the LAI and the percentage of biomass, important to indicate the productivity of coffee crop.