TAXA FOTOSSINTÉTICA E CONDUTÂNCIA ESTOMÁTICA DE CAFEEIROS CULTIVADOS COM DIFERENTES TIPOS DE MANEJO

CA Knuppel, Graduanda em Agronomia/UFLA; RCS Carvalho, Graduando em Engenharia Agrícola/UFLA; DT Castanheira, Doutoranda em Fitotecnia DAG/UFLA; FKO Batista, Bolsista de Iniciação Científica - Graduanda em Agronomia/UFLA; JM Guedes, Pesquisadora DAG/UFLA; RJ Guimarães, Professor DAG/UFLA; MAF Carvalho, Pesquisadora Embrapa-Café

A escassez hídrica e a distribuição irregular das chuvas comprometem diretamente a produtividade e qualidade do café produzido nas principais regiões cafeeiras do Brasil. Algumas estratégias de manejo podem ser adotadas para melhorar o microclima do cafezal e reduzir os impactos causados pelo aumento da temperatura média anual e pelo déficit hídrico. As características fisiológicas, como a fotossíntese e condutância estomática, estão diretamente relacionadas às limitações enfrentadas pelas culturas, principalmente devido às alterações climáticas.

O experimento foi instalado em uma área localizada no setor de cafeicultura na Universidade Federal de lavras – UFLA, em Lavras-MG, sendo o cafeeiro implantado em janeiro de 2016. O delineamento experimental utilizado foi em blocos ao acaso, com três repetições, em esquema fatorial (3x2x5) em parcelas sub subdivididas. O fator A, parcela principal, foi composto por três tipos de manejo do mato: uso de mulching, uso de braquiária e manejo convencional. O fator B foi constituído por tipos de fertilizantes: fertilizante convencional e fertilizante de liberação controlada, alocado na subparcela. O fator C foi constituído por condicionadores de solo: casca de café, gesso agrícola, polímero hidrorretentor, composto orgânico e testemunha, alocado na sub-subparcela, perfazendo um total de 30 tratamentos. Cada sub-subparcela foi constituída por 6 plantas, sendo consideradas como plantas úteis as quatro centrais. Aos 180 dias após a implantação, avaliou-se a taxa fotossintética líquida (A - μmol CO₂ m⁻² s⁻¹) e a condutância estomática (gs - mol H₂O m⁻² s⁻¹) com o auxílio de um sistema portátil de análise de gases a infravermelho (IRGA LICOR – 6400XT). As avaliações foram realizadas entre as 8 e 10 horas da manhã, sob luz artificial (1000 μmol m⁻² s⁻¹), utilizando sempre folhas completamente expandidas, localizadas no terceiro nó a partir do ápice do ramo. A análise de variância dos dados foi realizada com auxílio do software de análise estatística SISVAR. As médias obtidas foram comparadas pelo teste de médias Tukey, ao nível de 5% de probabilidade.

Resultados e conclusões

Não foi constatada significância para as interações entre os fatores para ambas as variáveis estudadas. Para a taxa fotossintética nenhum dos fatores estudados foram significativos. Já para condutância estomática os fatores manejo do mato e tipos de fertilizantes apresentaram diferença significativa pelo teste F, ao nível de 5% de probabilidade (Tabela 01).

Tabela 1 -Resumo de análise de variância para fotossíntese e condutância estomática de cafeeiros em função das fontes de variação (FV) manejo do mato (M), tipo de fertilizantes (F) e condicionadores do solo (C).

		Qua	Quadrados Médios	
FV	GL	Fotossíntese	Condutância Estomática	
Bloco	2	6,17	0,0120*	
M	2	16,16	0,0016	
Erro A	4	2,99	0,0006	
F	1	5,51	0,0056*	
MxF	2	0,57	0,0007	
Erro B	6	2,18	0,0005	
С	4	1,43	0,0011	
MxC	8	3,18	0,0005	
FxC	4	2,77	0,0007	
MxFxC	8	3,94	0,001	
Erro C	48	2,33	0,0004	
CV A (%)		23,62	30,02	
CV B (%)		20,12	27,46	
CV C (%)		20,83	25,76	

^{*}Significativo pelo teste F ao nível de 5% de probabilidade.

Verifica-se que a maior condutância estomática foi observada nos tratamentos com o uso do mulching e braquiária (Tabela 02). O cafeeiro com submetido ao manejo convencional do mato apresentou menor condutância estomática o que, possivelmente, está associado a ausência de cobertura do solo nesse tratamento.

Tabela 02 Umidade e compactação do solo (%) da lavoura cafeeira cultivada com diferentes tipos de manejo.

- 110 v - 11 v - 2				
Manejo do Mato	Fotossíntese	Condutância		
Mulching	7,86 a	0,10 a		
Braquiária	7,62 a	0,09 a		
Convencional	6,49 a	0,07 b		

^{*}As médias seguidas pelas mesmas letras, não diferem significativamente entre si pelo teste de Tukey, a 5% de probabilidade.

Em relação aos fertilizantes, nota-se pela Tabela 03 que o fertilizante de liberação controlada proporcionou maior condutância estomática, quando comparado ao convencional. Resultado esse confirma a relação direta entre a condutância estomática e a nutrição das plantas, principalmente em relação ao N e K. Os fertilizantes de liberação controlada diminuem as perdas dos nutrientes e, consequentemente, aumentam a eficiência das adubações. Tabela 03 Umidade do solo (%) da lavoura cafeeira implantada com o uso de diferentes condicionadores de solo.

Fotossíntese	Condutância Estomática			
7,58 a	0,09 a			
7,08 a	0,07 b			
	Fotossíntese 7,58 a			

^{*}As médias seguidas pelas mesmas letras, não diferem significativamente entre si pelo teste de Tukey, a 5% de probabilidade.

Os maiores valores de condutância estomática verificados nos tratamentos com mulching, braquiária e fertilizantes de liberação controlada possibilitam maior captação de CO_2 do cafeeiro o que pode favorecer o desenvolvimento da cultura.