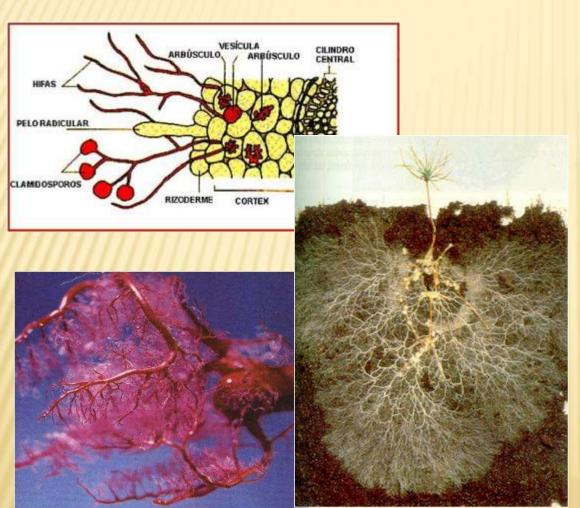
ESTUDO DA VIABILIDADE DE DISPONIBILIZAÇÃO DE POTÁSSIO E FÓSFORO EM SOLOS DE CERRADO COM A UTILIZAÇÃO DO PENERGETIC -4 SAFRAS

ANDRÉ L.T. FERNANDES – DR. ENGENHARIA DE ÁGUA E SOLO, PROF. UNIUBE E FACULDADES ASSOCIADAS DE UBERABA

R. SANTINATO - ENG. AGRÔNOMO MAPA PROCAFÉ
REGINALDO O. SILVA, - GERENTE DO CAMPO EXPERIMENTAL IZIDORO BRONZI, ARAGUARI, MG.

- Aumenta e equilibra as atividades microbiológicas no solo;
- Acelera a mineralização da Biomassa;
- Libera fósforo fixado;
- Aumenta e reorganiza a população de microrganismos no solo;
- Otimiza o uso e fertilizantes;



- Promove um bom enraizamento e simbiose com os organismos do solo;
- Otimiza o uso de insumos agrícolas;
- Promove o equilíbrio energético das plantas, aumentando sua resistência.

A IMPORTÂNCIA DAS MICORRIZAS

- 1 são fungos que se encontram nas raízes;
- A aumentam a capacidade de retirar água do solo;
- defendem as raízes com sua ação antibacteriana;
- aumentam a absorção de fósforo;
- permitem mobilizar nutrientes minerais;
- ◆ podem fixar o nitrogênio do ar;

OBJETIVOS

- * 1) avaliar o efeito da aplicação de penergetic K (solo) e penergetic P (planta), sobre a nutrição mineral, crescimento e a produtividade do cafeeiro irrigado e cultivado em condições de cerrado;
- 2) avaliar possibilidade de redução da adubação NPK do cafeeiro com a utilização do Penergetic.

MATERIAL E MÉTODOS

O experimento está sendo conduzido no Campus Experimental Izidoro Bronzi, convênio Universidade de Uberaba, Associação dos Cafeicultores de Araguari (ACA) e Fundação Procafé, em lavoura de café cultivar Catuaí Vermelho IAC 15, com 07 anos de idade, espaçamento 3,70 x 0,70 m, situada na Fazenda Chaparral, às margens da Rodovia do Café, Km 09, município de Araguari (MG).

MATERIAL E MÉTODOS

* O sistema de irrigação é o tipo gotejamento, com emissores autocompensantes, vazão de 2,3 litros/hora, espaçamento 3,70 x 0,70 m.

MATERIAL E MÉTODOS

Tratamentos	Forma de aplicação	Época aplicação	Dosagem por aplicação
1. Testemunha Padrão (gotejo normal, sem adubação PK, adubação nitrogenada normal)	-	<u>-</u>	-
2. Adubação de cobertura convencional via fertirrigação (100% de NPK recomendada)	Fertirriga- ção	Fertilizantes: Outubro, novembro, dezembro, janeiro, fevereiro, março (a cada 15 dias – 2 aplicações / mês)	
3. Adubação de cobertura convencional via fertirrigação (100% de NPK recomendada) + Penergetic P e K.		Fertilizantes: Outubro, novembro, dezembro, janeiro,	Conforme análise de solo*
4. Adubação cobertura convencional via fertirrigação (75% de NPK recomendada) + Penergetic P e K.	Aplicação no solo e foliar	dias – 2 aplicações / mês) Penergetic K – outubro Penergetic P – 3 aplicações,	arialise de solo
5. Adubação cobertura convencional via fertirrigação (50% de NPK recomendada) + Penergetic P e K.		junto com pulverizações de defensivos	

RESULTADOS: PRODUTIVIDADE

Tabela 2 - Colheita dos diferentes tratamentos, em sacas beneficiadas por hectare, quatro safras, Campo Experimental Isidoro Bronzi, Araguari/MG.

Isidolo Diolizi, Alaguati/Mo.									
Tratamentos	2009/2010	2010/2011	2011/2012	2012/2013	MÈDIA	PR%			
	P	Produtividade (sacas beneficiadas/ha)							
l- Testemunha Padrão (gotejo normal, sem adubação PK, adubação nitrogenada normal).	44,7 <u>bc</u>	49,3 a	43,2 ab	32,7 c	42,5 a	100			
2- Adubação de cobertura convencional via fertirrigação (100% de NPK recomendada)	38,6 c	50,2 a	47,1 a	38,2 <u>bc</u>	43,5 a	+2			
3- Adubação de cobertura convencional via fertirrigação (100% de NPK recomendada) + Penergetic P e K.	48,4 ab	57,1 a	33,2 b	54,6 a	48,4 a	+14			
4- Adubação de cobertura convencional via fertirrigação (75% de NPK recomendada) + Penergetic P e K.	52,5 a	49,8 a	55,1 a	48,7 ab	51,6 a	+21			
5- Adubação de cobertura convencional via fertirrigação (50% de NPK recomendada) + Penergetic P e K.	40,7 c	75,6 a	42,0 ab	54,4 a	53,1 a	+25			
CV_%	7,6	35,8	13,52	12,67	29,6				

Os tratamentos seguidos das mesmas letras nas colunas não diferem entre si pelo teste de Tukey a 5% de probabilidade.

RESULTADOS: PRODUTIVIDADE MÉDIA

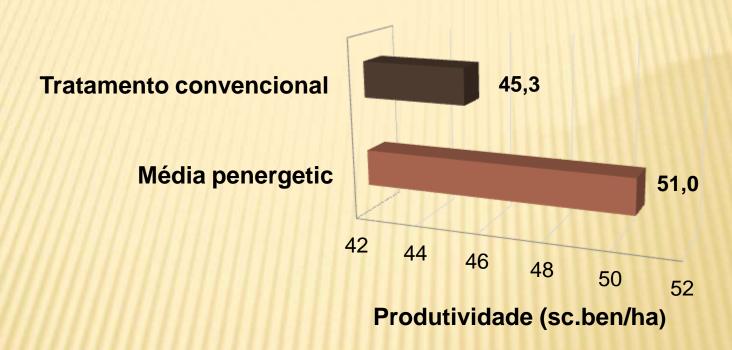


Figura 1 – Comparação da aplicação de Penergetic com a nutrição convencional, 4 safras, Campo Experimental Izidoro Bronzi, Araguari – MG.

RESULTADOS: C DA BIOMASSA MICROBIANA

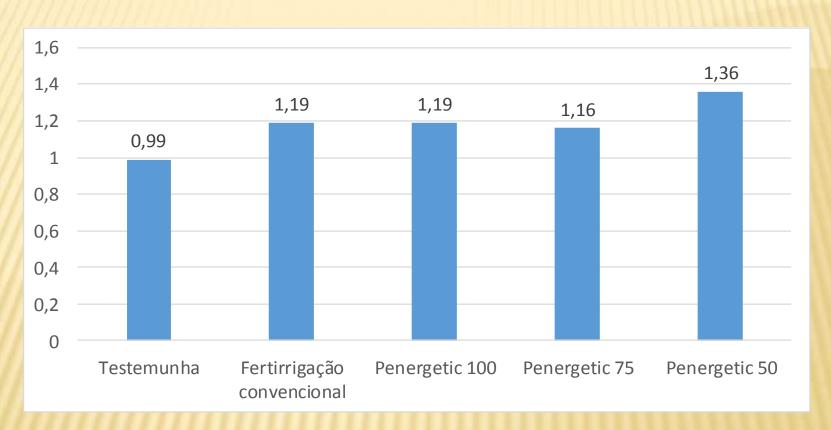


Figura 1 – Carbono da biomassa microbiana (mg de C/g de solo seco), avaliação 2013, Campo Experimental Izidoro Bronzi, Araguari – MG.

RESULTADOS: % COLONIZAÇÃO DE MICORRIZAS

tratamentos	% colonização
Testemunha – sem P e K	17,4
Adubação 100%	1,0
Penergetic + adubo 100%	15,0
Penergetic + adubo 75%	10,6
Penergetic + adubo 50%	22,0

RESULTADOS: NEMATÓIDES (MELOIDOGYNE SP.)

tratamento	solo	raíz		
Testemunha sem P e K	112	860		
Adubo 100%	276	884		
Penergetic + adubo 100%	256	324		
Penergetic + adubo 75%	172	160		
Penergetic + adubo 50%	188	72		

RESULTADOS: ANÁLISES DE SOLO

Quadro 3 – Resultados das análises de solo, quatro anos de condução do experimento

				17			0.0	070	
Tratamentos		Р	рН	K	Ca	Mg	SB	CTC	V
		(mg/dm³)	(Ca Cl ₂)	(mmol _c /	(mmol _c	(mmol _c /	(mmol _c /	(mmol _c /	(%)
				dm³)	1	dm³)	dm³)	dm ³)	
				,	dm³)	,	,	,	
1º ano	T 1	38	5,4	4,6	47	8	60	104	58
	T2	38	5,7	3,9	52	13	69	107	64
	T3	35	5,5	3,7	45	13	62	103	60
	T4	30	5,6	4,7	40	19	64	102	63
	T5	35	5,8	4,8	50	10	65	98	66
2º ano	T1	204	5,1	5,3	38	7	46	112	42
	T2	202	7,0	15,4	58	11	72	94	78
	Т3	107	6,0	12,6	41	9	54	90	60
	T4	141	6,7	9,8	49	16	68	91	75
	T5	108	6,1	14,3	41	9	54	88	62

RESULTADOS: ANÁLISES DE SOLO

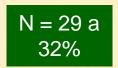
Quadro 3 – Resultados das análises de solo, quatro anos de condução do experimento

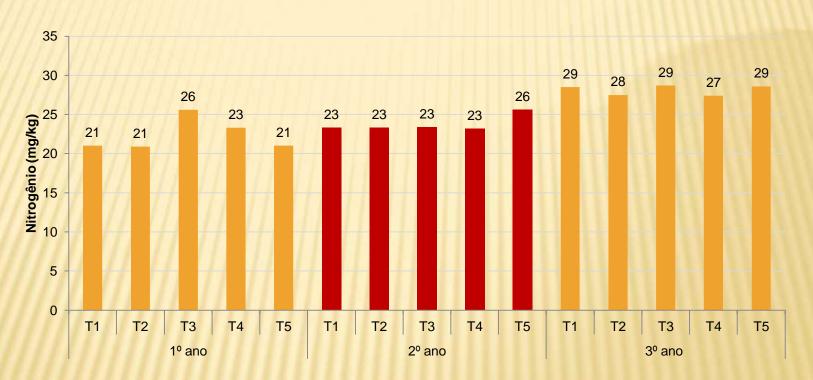
Tratam	entos	Р	рН	K	Ca	Mg	SB	СТС	V
A Tratamontos		(mg/dm³)	(Ca Cl ₂)	(mmol	(mmol _c / dm³)	(mmol _c /	(mmol _c / dm³)	(mmol _c /	(%)
3º ano	T1	125	4,3	1,4	30	4	36	115	31
	T2	92	4,7	6,5	26	7	40	92	44
	Т3	178	5,2	5,3	51	13	70	106	66
	T4	115	4,7	5,8	31	16	53	103	52
	T5	122	4,7	5,0	25	14	45	92	49
4º ano	T1	56		1,1	14	3	18	113	15
	T2	145		5,9	38	11	55	95	58
	Т3	117		5,0	27	10	43	92	46
	T4	129		6,6	29	9	45	95	47
	T5	225		8,0	61	15	84	112	75

Quadro 4 – Resultados das análises de folha, 4 anos, Campo Experimental Izidoro Bronzi, Araguari/MG.

/	- -	13.13.13.1			17		D 4		_	D 4		-	
/	Irat	am.	N	Р	K	Ca	Mg	S	Fe	Mn	Cu	Zn	В
1					g/	Kg				mg.	/Kg		
1		T1	21,0	0,7	16,6	19,2	3,2	1,1	228	62	12	15	63
1	0	T2	20,9	1,0	16,6	15,2	5,1	1,7	50	43	14	20	60
/	° ano	T3	25,6	1,4	14,9	12,8	3,7	1,7	50	43	15	18	61
1	10	T4	23,3	1,0	13,3	16,8	4,1	1,4	50	62	13	17	58
ĺ		T5	21,0	0,7	13,3	15,2	3,2	1,4	22	43	18	20	70
		T1	23,3	1,7	15,9	14,4	4,1	1,7	72	43	14	12	55
	0	T2	23,3	1,7	16,6	13,6	4,1	1,7	72	35	8	16	61
ĺ	[,] ano	Т3	23,4	1,4	16,5	13,5	4,1	2,0	71	43	13	14	47
ĺ	20	T4	23,2	1,3	16,6	14,4	4,2	2,0	50	8	8	13	35
		T5	25,6	1,7	15,9	13,6	3,7	1,7	73	15	15	18	55

Quadro 4 – Resultados das análises de folha, 4 anos, Campo Experimental Izidoro Bronzi, Araguari/MG.


Trat	am.	N	Р	K	Ca	Mg	S	Fe	Mn	Cu	Zn	В
				g/	Kg				mg/	/Kg		
	T1	28,5	1,6	12,9	13,3	3,9	1,9	390	129	114	35	7
Q	T2	27,5	1,4	18,9	15,1	3,9	1,9	352	118	173	45	2
ano	T3	28,7	1,7	21,7	13,6	3,0	2,1	347	92	204	46	12
30	T4	27,4	1,0	18,9	17,6	4,5	1,8	334	130	176	86	33
	T5	28,6	1,4	20,1	14,1	3,6	2,3	363	125	113	35	13
	T1	27,4	1,36	13,2	13,2	4,7	2,9	234	141	17	46	41
o	T2	28,8	1,36	24,0	12,1	3,2	2,1	265	137	24	79	48
ano	Т3	28,1	1,38	23,0	12,0	3,2	2,3	332	98	19	46	47
40	T4	29,7	1,47	24,5	11,8	3,1	2,3	276	134	26	77	36
	T5	28,8	1,64	24,0	12,7	3,4	2,2	238	93	19	50	50



RESULTADOS: A. FOLIAR

Análise foliar - nitrogênio

RESULTADOS: A. FOLIAR - 4° ANO

tratamentos	N	Р	K	Ca	Mg	S
1	27,4	1,36	13,2	13,2	4,7	2,9
2	28,8	1,36	24,0	12,1	3,2	2,1
3	28,1	1,38	23,0	12,0	3,2	2,3
4	29,7	1,47	24,5	11,8	3,1	2,3
5	28,8	1,64	24,0	12,7	3,4	2,2

CONCLUSÕES

A utilização da tecnologia Penergetic é viável para a nutrição do cafeeiro, na medida em que permite redução na adubação necessária, com aumento de produtividade. Na média de quatro safras, a superioridade de produção comparando-se com a nutrição convencional foi de beneficiadas/ha. Para conclusões mais concretas, são necessárias mais colheitas e análises da microbiologia do solo.

