
ESTUDO DA MELHOR MALHA AMOSTRAL PARA O CAFEEIRO SOB PIVÔ CENTRAL

VC Figueiredo - Doutoranda em Eng. Agrícola, Bolsista FAPEMIG, Universidade Federal de Lavras-UFLA, Lavras-MG, vcfigueiredo.agro@gmail.com; FM Silva - Eng Agrícola, Prof. Dpto. Engenharia/UFLA, <a href="mailto:fam

O café tem uma importância muito grande na história do Brasil, sendo um dos principais produtos agrícolas. A cafeicultura de precisão vem se expandindo e, para implantação desta tecnologia torna-se necessário a formação de malhas amostrais, que são imprescindíveis para o entendimento da variabilidade espacial da lavoura. Tecnologia que ainda geram discussões entre pesquisadores e técnicos por não possuir um padrão estabelecido para a cafeicultura. Assim, o objetivo do trabalho foi aplicar uma metodologia para avaliar a qualidade de malhas amostrais e definir a que melhor caracterize a variabilidade espacial da lavoura cafeeira. Para testar a metodologia, realizou-se um experimento nos anos de 2013 e 2014 na fazenda Três Pontas, Presidente Olegário/MG, em um pivô de 112 ha de lavoura cafeeira (Coffea arabica L.) da cultivar Catuaí 144, plantada no espaçamento de 4,0 x 0,5m, totalizando 5000 plantas ha⁻¹. Demarcaram-se na área 224 pontos georreferenciados (em média 2,0 pontos por hectare) para testar os atributos fósforo e potássio. Dentro da metodologia, para avaliar a qualidade das malhas amostrais Ferraz (2012) propõe dois índices: de exatidão (IE) para determinar a exatidão entre as malhas testadas e o de precisão (IP) que compara a precisão entre as diferentes malhas testadas. Tanto o valor do IE como o IP varia de zero a um, sendo que quanto mais próximo de um mais exata e ou precisa é a malha amostral e quanto mais próximo de zero mais inexata e ou imprecisa é a malha. Para a escolha da melhor malha amostral (malha ótima) dentre as malhas em estudo, utilizou o Indicador de Malha Ótima (IMO) que leva em consideração a ponderação entre o índice de exatidão e de precisão. Este índice (IMO), também varia de zero a um e quanto mais próximo de um (ou 100%) melhor a malha e quanto mais próximo de zero (0%) pior é a malha. Para se testar a aplicação do IE, IP e IMO, foram utilizadas 4 malhas amostrais, a malha de 0,5 com 224 pontos amostrais georreferenciados, a malha de 1,0 com 112 pontos, a malha de 1,5 com 79 pontos e a malha de 2,0 tinha 57 pontos amostrais georreferenciados.

Figura 1. Malhas amostrais testadas: (a) Malha de 0,5; (b) Malha de 1,0; (c) Malha de 1,5 e (d) Malha de 2,0.

Resultados e conclusões

Os atributos do solo fósforo e potássio para cada malha amostral em estudo foram submetidos à avaliação da dependência espacial, e foi possível quantificar a magnitude da dependência destes atributos. O efeito pepita é um importante parâmetro do semivariograma e indica variabilidade não explicada. Para o atributo fósforo o efeito pepita variou no ano de 2013 de 678,02 a 1307,80; em 2014 esta variação foi de 1395,83 a 2100,03. Já para o atributo potássio, este variou nos anos de 2013 e 2014 de 0,86 a 1,16 e 0,96 a 1,30 respectivamente, parâmetro não muito similar aos resultados de Ferraz (2012) encontrando para o atributo fósforo efeito pepita entre zero e 224,51 e para o atributo potássio efeito pepita variando de 134,65 à 891,21. Tal variação entre autores pode ser devido ao diferente tamanho de áreas estudadas e a presença de irrigação. Os valores do alcance relativos aos semivariogramas têm uma importância considerável na determinação do limite da dependência espacial, o que pode ser também um indicativo do intervalo entre unidades de mapeamento de solos (TRANGMAR; YOST; UEHARA, 1985). Os atributos estudados apresentaram diferentes alcances de dependência espacial, onde o fósforo teve seu alcance variando em 2013 e 2014 de 166,31 até 1093,16 m. E o potássio obteve uma variação no alcance entre os anos estudados de 167,95 à 1093,17 m. Ao ajustar o semivariograma para cada uma das malhas amostrais e encontrar os valores da validação, aplicou-se a avaliação dos índices (IE e IP) e do indicador.

Tabela 1 Parâmetros estimados pelo semivariograma ajustado pelo método dos Mínimos Quadrados Ponderados e pelo modelo esférico para o atributo Fósforo em 2013.

Malha	NPG	C_0	C_1	$C_0 + C_1$	a	GD		EA	$DP_{(EA)}$	ΙE	IP	IMO
0.5	224	1013.14	247.54	1260.68	229.91	80.36	Fra	0.2176	35.36	0.7344	0.1160	42.52

1,0	112	1034,43	203,72	1238,15	1075,13	83,55	Fra	0,1453	33,21	0,8226	0,1698	49,62
1,5	79	1307,80	65,73	1373,53	346,44	95,21	Fra	0,8192	40,00	0,0000	0,0000	0,00
2,0	57	678,02	273,06	951,08	252,70	71,29	Mod	0,5836	30,20	0,2876	0,2450	26,63

NPG-Número de Pontos da Malha Amostral; C_0 -Efeito Pepita; C_1 -Contribuição; C_0 + C_1 -Patamar; a-alcance; GD-Grau de Dependência Espacial; EA-Erro Absoluto; DP_{EA} -Desvio Padrão do Erro Absoluto; IE-Índice de Exatidão; IP-Índice de Precisão; IMO-Indicador de Malha Ótima; For-Forte; Mod-Moderado; Fra-Fraco.

Tabela 2 Parâmetros estimados pelo semivariograma ajustado pelo método dos Mínimos Quadrados Ponderados e pelo modelo esférico para o atributo Fósforo em 2014.

Malha	NPG	C_0	C_1	$C_0 + C_1$	a	(GD	EA	$\mathrm{DP}_{(\mathrm{EA})}$	ΙE	IP	IMO
0,5	224	2100,03	103,02	2203,05	166,31	95,32	Fra	0,6053	46,7332	0,5858	0,0116	29,87
1,0	112	1395,83	833,87	2229,7	174,12	62,60	Mod	0,7944	47,2809	0,4564	0,0000	22,82
1,5	79	1941,97	0,00	1941,97	1093,16	100,00	Fra	1,4615	43,3057	0,0000	0,0841	4,20
2,0	57	2008,40	0.00	2008,40	434,93	100,00	Fra	1,1827	46,1305	0,1908	0,0243	10,75

NPG-Número de Pontos da Malha Amostral; C₀-Efeito Pepita; C₁-Contribuição; C₀+C₁-Patamar; a-alcance; GD-Grau de Dependência Espacial; EA-Erro Absoluto; DP_{EA}-Desvio Padrão do Erro Absoluto; IE-Índice de Exatidão; IP-Índice de Precisão; IMO-Indicador de Malha Ótima; For-Forte; Mod-Moderado; Fra-Fraco.

Tabela 3 Parâmetros estimados pelo semivariograma ajustado pelo método dos Mínimos Quadrados Ponderados e pelo modelo esférico para o atributo Potássio em 2013.

Mall	na NPG	C_0	C_1	$C_0 + C_1$	a	GD)	EA	$DP_{(EA)}$	ΙE	IP	IMO
0,5	224	1,03	0,24	1,28	232,17	80,942	Fra	0,0015	1,1104	0,8214	0,0472	43,43
1,0	112	1,07	0,30	1,38	250,23	77,6993	Fra	0,0012	1,1654	0,8571	0,0000	42,86
1,5	79	1,16	0,03	1,19	1093,17	97,475	Fra	0,0084	1,0882	0,0000	0,0662	3,31
2,0	57	0,86	0,23	1,09	348,84	78,4392	Fra	0,0010	1,0228	0,8810	0,1224	50,17

NPG-Número de Pontos da Malha Amostral; C₀-Efeito Pepita; C₁-Contribuição; C₀+C₁-Patamar; a-alcance; GD-Grau de Dependência Espacial; EA-Erro Absoluto; DP_{EA}.Desvio Padrão do Erro Absoluto; IE-Índice de Exatidão; IP-Índice de Precisão; IMO-Indicador de Malha Ótima; For-Forte; Mod-Moderado; Fra-Fraco.

A partir dos resultados obtidos pode-se concluir que: - os índices permitiram a observação da exatidão e precisão das malhas amostrais e o IMO permitiu identificar a malha que melhor representa a variabilidade espacial dos atributos no campo. A malha de 0,5 ou seja, com grade amostral de 2 pontos/ha representou com mais exatidão e precisão os atributos Fósforo e Potássio. - Os resultados apresentados evidenciaram que a escolha de uma malha amostral é de fundamental importância para a confiabilidade da aplicação das técnicas de cafeicultura de precisão.

Tabela 4 Parâmetros estimados pelo semivariograma ajustado pelo método dos Mínimos Quadrados Ponderados e pelo modelo esférico para o atributo Potássio em 2014.

Malha	NPG	C_0	C_1	$C_0 + C_1$	a	G	D	EA	DP _(EA)	ΙE	IP	IMO
0,5	224	0,99	0,25	1,21	167,95	81,54	Fra	0,0066	1,0869	0,8821	0,2106	54,64
1,0	112	0,96	0,52	1,49	522,04	64,62	Mod	0,0152	1,0488	0,7286	0,2382	48,34
1,5	79	1,24	0,46	1,70	272,00	72,94	Mod	0,0259	1,2387	0,5375	0,1003	31,89
2,0	57	1,30	0,63	1,94	258,25	67,45	Mod	0,0560	1,3768	0.0000	0,0000	0.00

NPG-Número de Pontos da Malha Amostral; C₀-Efeito Pepita; C₁-Contribuição; C₀+C₁-Patamar; a-alcance; GD-Grau de Dependência Espacial; EA-Erro Absoluto; DP_{EA}-Desvio Padrão do Erro Absoluto; IE-Índice de Exatidão; IP-Índice de Precisão; IMO-Indicador de Malha Ótima; For-Forte; Mod-Moderado; Fra-Fraco.