FONTES DE BYOZINE NA PRODUÇÃO DO CAFEEIRO EM SOLO DE CERRADO.

SANTINATO, R. Engenheiro Agrônomo, MAPA-Prócafé, Campinas, SP.; SANTINATO, F. Engenheiro Agrônomo, Mestrando UFV Campus Rio Paranaíba.; SILVA, R.O. – Téc. Agrícola ACA- Araguari- MG; D'Antonio, G. Engenheiro Agrônomo – LGS. Campinas/SP;PEREIRA,E.M.- Técnico Agrícola – Campo experimental – Rio Paranaíba-MG.;

O Boro é um dos micronutrientes que apresentam teores deficientes na maioria dos solos de Cerrado, sendo obrigatória sua aplicação via solo ou foliar para produtividade máxima potencial do cafeeiro. É fundamental para o direcionamento quimiotrópico do tubo polimico, fecundação, e evitando a queda prematura das flores. Para que ocorra deficiência deste nutriente, contribuem os baixos teores no solo (menos de 0,5 a 1,0 mg dm⁻³), o excesso de calagem, o excesso de potássio, falta de cobre e longos períodos de estiagem ou de muita chuva. A carência aparece nas folhas novas, que ficam deformadas, afiladas, pequenas e com bordas arredondadas. Muitos trabalhos evidenciam o aumento da produtividade com aplicações de B de diferentes fontes, e como ele se movimenta pouco pelo floema as adubações via solo parecem ser mais eficientes. Diante disso, objetivou-se no presente trabalho estudar o efeito de B na produção do cafeeiro em função de diferentes fontes e modos de aplicação do nutriente na planta.

O experimento foi instalado no Campo experimental da ACA (Associação dos cafeicultores de Araguarí-MG) em solo Latossolo Amarelo Distrófico, altitude 920 m, declividade de 3%, com a cultivar Catuaí Vermelho IAC 51, plantado em 10 de novembro de 2009, no espaçamento de 3,7 x 0,7 m totalizando 3861 plantas ha⁻¹. O delineamento experimental foi o de blocos casualizados, sendo seis tratamentos com quatro repetições, em parcelas de 30 plantas, destas, úteis as seis centrais. Todos os tratos culturais, nutricionais e fitossanitários seguiram as recomendações vigentes para a região do MAPA-Procafé. No presente trabalho, objetiva-se estudar os efeitos do B, através de diferentes fontes. Testou-se aplicações foliares anuais (Outubro, Dezembro, Fevereiro e Março) e aplicações via solo bianuais com diferentes produtos comerciais (Ácido Bórico, 17% de B; Ager Boro, 10% de B; Boro Líquido, 8% de B; Ulexita, 15% de B; Ulexita, 9% de B; Ulexita, 11% de B todas em pó, com exceção para Ulexita, 10% de B granulada). No inicio do experimento o teor de B nosso era de 0,2 mg dm⁻³. As avaliações constaram das produções de 2010, 2011, 2012 e 2013 (Tabela 1) e análise foliar (Tabela 2). Os dados passaram pela análise do teste Ducan a 5% de probabilidade afim de verificar sua significância.

Resultados e conclusões -

Os resultados das quatro primeiras safras e a média do quadriênio acham-se na Tabela 1. Na Tabela 2, temos as análises de solo e foliar realizadas no segundo ano de condução do trabalho. Verifica-se que na primeira safra, sem diferenças significativas, os tratamentos mais produtivos foram o T3, T4 e T8. Na segunda com diferenças significativas foram o T9, seguido de T2, T3, T4, T5 e T6. Na terceira safra, também com diferenças significativas os melhores tratamentos foram T9, T8, T7, T4 e T3. Na quarta safra o melhor tratamento foi o que aplicou ácido bórico via foliar na concentração de 0,5%. Na média das safras avaliadas, os tratamentos que promoveram os maiores valores de produtividade foram o ácido bórico aplicado via solo e o boro líquido aplicado via foliar na concentração de 0,8%. Todos os outros tratamentos boratados foram equivalentes entre si e superiores em relação à testemunha.

Tabela 1. Produção de café em função das fontes e formas de aplicação de B nas plantas.

Tratamentos	Produção (Sacas de café beneficiadas ha ⁻¹)							
Tratamentos	2010	2011	2012	2013	Média	R%		
1- Testemunha	6,1 a	39,3 b	13,3 b	34,8 ab	28,4 b	100		
2- Ácido Bórico (0,5%) (4x ano - foliar)	29,1 a	58,5 ab	24,6 ab	40,7 a	38,2 ab	+34		
3- Agua Boro (0,4%) (4x ano - foliar)	38,4 a	50,6 ab	32,2 a	38,8 ab	38,9 ab	+37		
4- Boro líquido (0,8%) (4x ano - foliar)	38,2 a	56,1 ab	30,9 a	38,1 ab	40,8 a	+43		
5- Ulexita (15%) - 28,3 kg ha ⁻¹	30,3 a	54,2 ab	29,7 a	31,2 b	36,4 ab	+28		
6- Hidro Ulexita (9%) - 47,2 kg ha ⁻¹	30,2 a	58,8 ab	24,4 ab	34,8 ab	36,9 ab	+30		
7- Hidro Ulexita (11%) - 38,6 kg ha ⁻¹	23,8 a	49,4 b	29,2 a	29,8 b	33,1 ab	+16		
8- Tri Ulexita granulado (10%) 42,5 kg ha ⁻¹	35,0 a	40,1 b	33,4 a	32,1 ab	35,7 ab	+24		
9- Ácido Borico (17,5%) - 26 kg ha ⁻¹	27,1 a	62,3 a	36,3 a	38,1 ab	41,0 a	+44		
CV% (Ducan a 5%)	37,93	30,91	26,09	18,54	21,67			

^{*} Tratamentos seguidos das mesmas letras nas colunas não diferem entre si pelo teste de Ducan a 5% de probabilidade., **Tratamentos 2, 3 e 4 aplicações anuais (Outubro, Dezembro, Fevereiro e Março). ***Tratamentos 5, 6, 7, 8 e 9 aplicações bianuais em Outubro.

Na análise do solo os maiores valores obtidos foram para o T9, seguido do T7, T8, T6 e T5, todos estes acima de 1 mg dm⁻³. Os tratamentos foliares também apresentaram teores no solo superiores que a testemunha, provavelmente pelo escorrimento dos produtos no solo. A análise foliar revelou todos os tratamentos com teores adequados entre 0,64 a 0,84 mg kg⁻¹; e a testemunha com 0,49 mg kg⁻¹, valor próximo ao do nível limiar de 0,40 mg kg⁻¹.

Tabela 2. Teores de B no solo e nas folhas, avaliações realizadas no 2º ano de condução do experimento.

Tratamentos	1	2	3	4	5	6	7	8	9
Teor no solo (mg kg ⁻¹)	0,37	0,47	0,55	0,59	1,18	1,31	1,65	1,43	2,15
Teor foliar (mg kg ⁻¹)	49	76	72	84	73	82	69	67	64

- 1°) Todas as fontes estudadas elevam os teores de boro no solo e foliar, com valores maiores para os produtos no solo e sem diferenças para teores foliares entre todas fontes.
- 2°) A aplicação de boro aumentou a produtividade de 34 a 43% para os foliares e de 16 a 44% para os produtos via solo, em relação à dose zero de B.
- 3°) Das fontes foliares o Boro liquido (0,8%) foi o mais produtivo, e das fontes via solo o Ácido bórico condicionou as maiores produções. (26 kg ha⁻¹).
- 4°) Das fontes via solo, entre as ulexitas o pior comportamento foi a hidroulexita com 11% e a melhor a de 9%.