IRRIGAÇÃO E UTILIZAÇÃO DE GRANULADOS DE SOLO NA PRODUÇÃO DO CAFEEIRO¹

André Luís Teixeira FERNANDES – Prof. Universidade de Uberaba, E-mail: andre.fernandes@uniube.br; Roberto SANTINATO – Eng.º Agrônomo Pesquisador Ministério da Agricultura / PROCAFÉ; Luís César Dias DRUMOND – Prof. Universidade de Uberaba; Ricardo LESSI – Engenheiro Agrônomo Bayer S.A.

RESUMO: Com o objetivo de avaliar a eficiência de produtos granulados (inseticidas – fungicidas sistêmicos) com diferentes níveis de umidade do solo na produção do cafeeiro Catuaí, foi conduzido ensaio de campo em Bonfinópolis – MG durante os anos de 1996, 1997 e 1998. Em termos de manejo de irrigação, os resultados de produção mostraram que a irrigação total (fornecimento de 100% do valor exigido no balanço hídrico climatológico) promoveu maior eficiência dos granulados, sendo obtidos com esse manejo as maiores produções. Com relação aos granulados, verificou-se maior eficiência do Baysiston na dose de 50 kg/ha/ano, independentemente do manejo de irrigação adotado.

PALAVRAS-CHAVE: café, manejo da irrigação, gotejamento, granulados

SUMMARY: In order to study the eficciency of soil granulate products and different level of irrigation, it was installed a field experimentation in Bonfinópolis – MG, and a crop evaluation was performed for 3 harvest (1996, 1997 and 1998). The results showed that irrigated plants (with no hidraulic deficit – 100%) produce the best yield and efficiency of soil granulated products. The best efficiency of granulated products was obtained by Baysiston aplication (50 kg/ha/year).

KEY WORDS: coffee, irrigation control, drip irrigation, granulate products.

INTRODUÇÃO

A cafeicultura nacional sempre ocupou, em sua grande maioria, áreas de clima úmido, nos quais o cafeeiro normalmente é suprido adequadamente pelas chuvas para o seu crescimento e frutificação. Com a ampliação da fronteira cafeeira para os cerrados e nordeste do país, a irrigação passou a merecer maior atenção, refinando toda a tecnologia de produção (Santinato et al., 1996). Nessas regiões consideradas marginais à cafeicultura, muitos plantios efetuados sem o suprimento artificial de água foram seriamente prejudicados, necessitando dessa forma serem recuperados. Vários autores verificaram o efeito positivo da irrigação no crescimento (Matiello & Dantas, 1987; Zanini et al., 1994) e na produção do cafeeiro (Barreto et al., 1972; Njoroge, 1989; Reis et al., 1990). Araújo (1982) verificou que a irrigação, além de uma maior produtividade, possibilitou um produto de melhor tipo e bebida. Dentro desse contexto de aumento de tecnologia utilizada, o uso de granulados de solo, principalmente fungicidas e inseticidas sistêmicos na cultura do café tem crescido bastante nos últimos anos, na medida em que combate alguns dos principais problemas de pragas e doenças da cultura, como bicho-mineiro e ferrugem.Em lavouras irrigadas em áreas de déficit hídrico acentuado (DH > 150 mm / ano), independentemente do sistema de irrigação adotado, tem-se observado na prática que o uso de granulados de solo, notadamente a associação inseticida-fungicida sistêmico confere maior vigor vegetativo e produtivo à cultura. Essa situação é verificada mesmo quando a irrigação é deficiente, em relação à necessidade real calculada pelo balanço hídrico climatológico (Santinato et al., 1996). O efeito dos granulados de solo, segundo informações práticas, confere maior resistência ao cafeeiro em condições de estresse hídrico, na medida em que promove um melhor desenvolvimento radicular e consequentemente maior enfolhamento nos períodos críticos da cultura. Com o objetivo de avaliar estas observações de campo, instalou-se um experimento em Bonfinópolis - MG, em lavoura de café Catuaí irrigado por sistema de gotejamento, utilizando-se quatro níveis de irrigação, para verificação da eficiência de produtos granulados em condições variáveis de umidade do solo.

MATERIAL E MÉTODOS

O experimento foi instalado em Bonfinópolis – MG, numa lavoura de café Catuaí Vermelho com 7/8 anos de idade, com espaçamento 4,0 x 0,8m, em solo LVA (Latossolo Vermelho Amarelo), com declive de 3% e

¹ Projeto de Pesquisa desenvolvido pelo Convênio Ministério da Agricultura/ PROCAFÉ, Universidade de Uberaba e BAYER S.A.

altitude de 900 m. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições e parcelas com 30 m de linha, sendo considerados úteis os 20 m centrais. O sistema de irrigação utilizado foi o de gotejamento, com emissores autocompensantes da marca Katif, com vazão de 4,0 l/h. O balanço hídrico climatológico foi utilizado para o monitoramento da irrigação, segundo as determinações de Pereira et al. (1997). Como tratamentos de irrigação, foram utilizados porcentagens da necessidade real de água, calculada pelo balanço hídrico: a) (P-EP) = 100% - irrigação total; b) (P-EP) = 75%; c) (P-EP) = 50%; d) (P-EP) = 0% - sem irrigação. Quanto aos granulados, os tratamentos foram: a) Baysiston 50 kg/ha/ano aplicado em 15 de dezembro; b) Bayfidan GR 15 kg/ha/ano aplicado em 15 de dezembro; c) Bayfidan GR 15 kg/ha/ano aplicado em 15 de março; d) Temik 20 kg/ha/ano em 15 de março; d) Temik 20 kg/ha/ano em 15 de março e d) Testemunha (sem aplicação de granulados). Na condução do ensaio foram feitos os mesmos tratos culturais e nutricionais, bem como controle fitossanitário para todos os tratamentos, de acordo com as recomendações do Ministério da Agricultura / PROCAFÉ para a região.

RESULTADOS E DISCUSSÃO

Os resultados obtidos, em termos de produção em sacas beneficiadas por hectare podem ser vistos no Quadro 1 e na Figura 1. Analisando-se a Figura 1, verifica-se que independentemente do uso de granulados, a reposição total da necessidade hídrica promove melhores resultados em termos de produção. Quando se reduz a aplicação necessária para 75 e 50%, a produção diminui 10,3 e 24,1 sacas beneficiadas por hectare, respectivamente. Em relação à testemunha não irrigada, verificaram-se aumentos de 117, 290 e 374% para os tratamentos com reposição de 50, 75 e 100% da necessidade de água. Com relação aos granulados testados, verificou-se que o Baysiston apresentou a maior eficiência em todos os níveis de irrigação, comparando-se com o tratamento correspondente sem a aplicação de granulado. O segundo lugar em eficiência foi decorrente da associação Bayfidan com Temik. Isoladamente o Bayfidan e o Temik foram menos eficientes em termos de aumentos de produção.

CONCLUSÕES

Nas condições desse ensaio, com as duas primeiras produções, pode-se concluir que: o efeito dos granulados é bastante prejudicado quando não se utiliza irrigação; a reposição total da necessidade hídrica de acordo com o balanço hídrico é superior às reposições parciais, em termos de produção; o granulado com melhor desempenho nos tratamentos irrigados foi o Baysiston, com acréscimos de produção de até 65%.

BIBLIOGRAFIA

- **ARAÚJO, J. A. C.** 1982. Análise do comportamento de uma população de café Icatu sob condições de irrigação por gotejamento e quebra-vento artificial. Dissertação (Mestrado) Escola Superior de Agricultura "Luiz de Queiroz" / USP, Piracicaba, Brasil.
- **BARRETO, G. B.; REIS, A. J.; DEMATTÊ, B. J.; IGUE, T**. 1972. Experiência de irrigação e modo de formação de café novo. *Bragantia*, Campinas, Brasil, v.31, n.4, pp.41-50.
- **MATIELLO, J.B.; DANTAS, F.S.** 1987. Desenvolvimento do cafeeiro e seu sistema radicular, com e sem irrigação, em Brejão (PE). In: Congresso Brasileiro de Pesquisas Cafeeiras, Campinas, Brasil. Anais, pp. 165-166.
- NJOROGE, J.M. 1989. A review of some agronomic investigations on arabica coffee in Kenya. **Kenya Coffee**, v.54, n.629, pp.553-567.
- PEREIRA, A. R.; VILLA NOVA, N.A.; SEDIYAMA, G.C. 1997. **Evapo(transpi)ração**. Piracicaba, Brasil, 183pp.
- REIS, G. N.; MIGUEL, A. E.; OLIVEIRA, J. A. 1990. Efeito da irrigação, em presença e ausência da adubação NPK, em cafeeiros em produção Resultados de 3 produções em Caratinga MG. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 16, Espírito Santo do Pinhal, Brasil. Anais, pp.19-21.
- SANTINATO, R.; FERNANDES, A. L. T.; FERNANDES, D. R. 1996. Irrigação na Cultura do Café. Campinas, Brasil, 140pp.
- ZANINI, J. R.; OLIVEIRA, J. C.; PAVANI, L. C.; PEDROSO, P. A.; VALIM, M. R. 1994. Efeito da irrigação no desenvolvimento vegetativo de cafeeiros novos. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 23, Campinas SP. 30p.

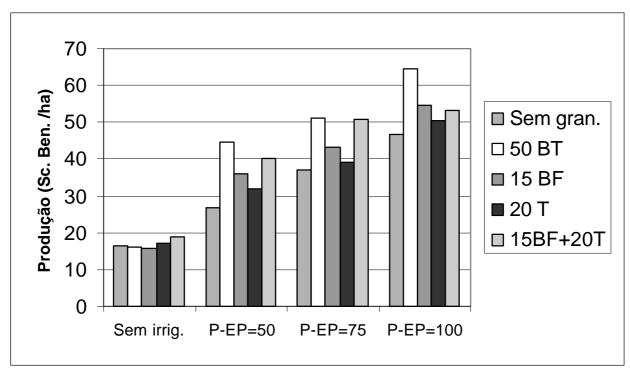


Figura 1 – Comparações entre os tratamentos (granulados e manejo de irrigação)

Tabela – Efeitos de granulados de solo na produção do cafeeiro sob diferentes manejos de irrigação.

Tratamentos			Sacas beneficiadas / ha			
Nº	Irrigação	Granulados	1996	1997	1998	Média
1		0	9,1	15,8	24.7	16.52
2	Sem	50 BT	8,4	19,2	20.4	15.99
3	Irrigação	15 BF	4,9	16,8	25.2	15.62
4	(P-EP)=0	20 T	4,8	18,1	28.8	17.23
5		15BF + 20T	6,2	20,0	30.2	18.80
MÉDIA			6,6	17,9	25.8	16,83
6		0	24,2	27,8	28.7	26.91
7	(P-EP) = 50	50 BT	54,4	31,4	48.0	44.60
8		15 BF	25,1	36,1	47.3	36.18
9		20 T	22,9	37,2	35.5	31.88
10		15BF + 20T	49,0	29,8	42.1	40.31
MÉDIA			35,1	32,4	40.3	35,97
11		0	37,6	41,6	31.9	37.02
12	(P-EP) = 75	50 BT	71,7	38,9	43.0	51.18
13		15 BF	49,4	40,6	40.0	43.32
14		20 T	34,0	49,3	34.0	39.09
15		15BF + 20T	86,8	26,1	40.0	50.95
MÉDIA			55,9	39,3	37.7	44,31
16		0	46,5	53,8	39.4	46.57
17	(P-EP) = 100	50 BT	90,4 a	42,9	60.3	64.54
18	S/ Déficit	15 BF	75,3	46,1	42.6	54.68
19		20 T	59,3	47,8	44.4	50.50
20		15BF + 20T	83,9	33,8	41.8	53.15
MÉDIA			71,7	44,9	45.7	53,89

AVISO

ESTA PUBLICAÇÃO PODE SER ADQUIRIDA NOS SEGUINTES ENDEREÇOS:

FUNDAÇÃO ARTHUR BERNARDES

Edifico Sede, s/nº. - Campus Universitário da UFV

Viçosa - MG

Cep: 36571-000

Tels: (31) 3891-3204 / 3899-2485

Fax: (31) 3891-3911

EMBRAPA CAFÉ

Parque Estação Biológica - PqEB - Av. W3 Norte (Final)

Edifício Sede da Embrapa - sala 321

Brasília - DF

Cep: 70770-901

Tel: (61) 448-4378

Fax: (61) 448-4425