INFECTIVIDADE DE JUVENIS DE SEGUNDO ESTÁDIO DE Meloidogyne paranaensis EXPOSTOS AO OZÔNIO (O₃)

S. R. Souza, Bolsista AT Consócio EMBRAPA/ Café, simonemonasimone@gmail.com; T. G. C. Naves, Aluno 8ºperíodo de Agronomia/UFLA B. T. Gazolla, Aluna 5ºperíodo de Agronomia/UFLA; S. M. L. Salgado, Pesquisadora EPAMIG-URESM, Lavras; T. Freitas, Aluna 8º período de Agronomia/UFLA; V. A. da Silva, Dr., Professor DAG-UFLA

Das espécies causadoras de galhas, *Meloidogyne paranaensis* é uma das que mais afetam o cafeeiro, impossibilitando o desenvolvimento e produção da lavoura. Em Minas Gerais foi registrada a presença de *M. paranaensis* nas regiões Sul, Sudoeste, Triangulo e Alto Paranaíba, o que deixa grande parte dos produtores em alerta pois entre as lavouras e as áreas cafeeiras o nematoide pode se disseminar facilmente através de mudas contaminadas, água de enxurrada, máquinas e implementos com restos de solo infestado. No ciclo de vida de *Meloidogyne* spp. o estádio de desenvolvimento do juvenil desse nematoide inicia dentro do ovo, onde ocorre a primeira ecdise e o juvenil atinge o segundo estádio (J2). Nesse estádio o juvenil eclode do ovo quando é atraído pelos exsudatos radiculares da planta e, através da sua movimentação pelo filme d'água que recobre as partículas de solo, o J2 alcança a raiz onde penetra dando início ao parasitismo representando sua fase infectiva.

A muda é a principal e mais eficiente forma de disseminação do nematoide e isso advém do fato de que na formação das mudas os viveiristas utilizam solo e água que podem carregar fitopatógenos dentre eles os nematoides. Como não há no mercado nenhum produto nematicida registrado para o tratamento de solo e ou substrato, os viveiristas ficam sujeitos a ocorrência de nematoides durante o processo de formação das mudas. Tendo em vista que o ozônio vem sendo empregado de modo eficiente na desinfecção de alimentos e como novas tecnologias para eliminação de microrganismos em água e buscando um método para formação de mudas sadias, este trabalho teve como objetivo avaliar a eficiência do gás ozônio em diferentes concentrações sobre juvenis de M. paranaensis em água. A partir de raízes de cafeeiro coletadas em lavoura com M. paranaensis, identificado por meio da esterase de isoenzimas, os ovos do nematoide foram extraídos pela técnica de Hussey & Barker (1973). Os juvenis foram obtidos através do método de incubação dos ovos em câmaras de eclosão preparadas empregando-se funil de Baermann contendo peneiras de tecido poliéster (0,025 a 0,030 mm de abertura). Desse funil os J2 foram recolhidos a cada 24h durante 3 dias consecutivos, eliminando-se os J2 da primeira coleta e mantendo-se os demais em água em câmara fria (8 a 10 °C). Os J2 recolhidos foram quantificados para ajuste da concentração em aproximadamente 1700 ovos.mL de água natural antes da aplicação do ozônio em diferentes concentrações e tempo correspondendo aos tratamentos: 1 - nematoides em água (testemunha) sem aplicação de Ozônio; 2 - Ozônio 10% por 15 minutos; 3 - 10% por 30 minutos; 4 - 25% por 15 minutos; 5 - 25% por 30 minutos. Após a exposição dos juvenis de M. paranaensis ao gás, os J2 submetidos aos tratamentos acima foram inoculados em mudas de tomateiro cv. Santa Clara crescidas em substrato comercial Plantmax[®] em copos descartáveis de 200 cm³ e mantidas em casa de vegetação. O experimento foi conduzido em DIC, com quatro repetições e cinco tratamentos. Aos 30 dias da aplicação do ozônio avaliaram-se o número de galhas por planta; peso da matéria fresca da raiz; população (ovos + Juvenis do segundo estádio) por planta, população por grama de raiz e a porcentagem da redução do número de nematoides por planta em relação a testemunha. Os dados foram submetidos à análise estatística por meio do programa Sisvar e o teste de médias de Tukey.

Resultados e conclusões

O peso da matéria fresca da raiz (PMFR) dos tomateiros não foi influenciado pelos tratamentos de aplicação do Ozônio (O_3) , Tabela 1. Isso demonstra ausência de fitotoxidez do O_3 às raízes das plantas.

A infectividade dos Juvenis submetidos à exposição ao O₃ nas diferentes concentração e tempo de exposição foi influenciada por esse gáz. Isso pode ser verificado pela redução do número de galhas (NG), população (ovos + Juvenis do segundo estádio) por planta (POP/Planta), população por grama de raiz (POP/Grama de raiz) e porcentagem da redução da infectividade (RI), sendo semelhantes entre si (Tabela 1).

A aplicação do ozônio nas concentração e tempo de exposição empregadas reduziu igualmente a infectividade dos J2. Nesse caso podemos inferir que o tratamento da água de irrigação de viveiros com Ozônio nas concentrações e tempo de exposição empregados no presente trabalho não inviabiliza totalmente a população do nematoide na água, não sendo portanto recomendados como tratamento dessa água em viveiros. Pesquisas devem ser continuadas para verificar a concentração do Ozônio e tempo de exposição ideais para desinfestação de água de irrigação.

Tabela 1. Número de galhas (NG), Peso da matéria fresca da raiz (PMFR) de tomateiros, População (ovos + Juvenis do segundo estádio) de *Meloidogyne paranaensis* e percentual de redução da infectividade (RI) de juvenis do segundo estádio após exposição ao gáz ozônio (O₃) em diferentes concentrações e tempo de exposição.

Tratamentos ^x	NG	PMFRaiz (g)	POP/Planta ^y	POP/Grama de raiz	% RI ^z
1	248,00 a2	4,50a1	4.304,00 a2	1.012,00a2	-
2	36,25 a1	4,75 a1	502,00 a1	91,00 a1	88,34
3	15,25 a1	3,25 a1	182,75a1	51,50 a1	95,75
4	42,50 a1	3,75 a1	296,25a1	104,50 a1	93,12
5	28,50 a1	4,75 a1	200,00a1	40,50 a1	95,35

Médias seguidas da mesma letra na coluna são iguais pelo teste Tukey (P=0,01).

^x1- nematoides em água (testemunha) sem aplicação de Ozônio; 2- Ozônio 10% por 15 minutos; 3- 10% por 30 minutos; 4- 25% por 15 minutos; 5- 25% por 30 minutos. ^y POP - População (ovos + Juvenis do segundo estádio). ^z RI –Redução da infectividade.

Concluiu-se que - A aplicação do Ozônio nas concentrações e tempo de exposição dos juvenis do segundo estádio de <i>Meloidogyne paranaensis</i> em água reduziu a infectividade desse nematoide ao tomateiro.					