CAFÉ ARÁBICA E CONILON: INFLUÊNCIA DA DESCAFEINAÇÃO SOBRE CARACTERÍSTICAS FÍSICAS E QUÍMICAS

AR Lima^{1*}, MHA Eugênio², KM Tavares², RGFA Pereira³, SMS Duarte⁴, SA Abrahão⁵ 1 Doutoranda em Ciência dos Alimentos da UFLA. 2 Mestranda em Ciência dos Alimentos da UFLA. 3 Professora doutora do Departamento de Ciência dos Alimentos da UFLA 4 Professora doutora do Departamento de Análises Clínicas da UNIFAL-5 Professora doutora do Instituto Federal de Educação, Ciência e Tecnologia Fluminense. *biodri@hotmail.com

O café tem sido uma das bebidas mais aceitas em diversas partes do mundo pelo fato de possuir um aroma bem característico. O café descafeinado responde por 10% do consumo mundial de café e com isso há a necessidade de estudos sobre suas características físicas e químicas. A descafeinação é realizada nos grãos crus inteiros, antes do processo de torração. A extração da cafeína com diclorometano é o método mais utilizado no Brasil. Este estudo objetivou investigar o efeito do processo de descafeinação sobre parêmetros físico-químicos em cafés da espécie *Coffea arabica* L. e *Coffea canephora* Pierre. As amostras de café (arábica e conilon, plantadas no Brasil) foram analisadas antes e após o processo de descafeinação com diclorometano.

Os cafés foram torrados (torrador Probatino) no grau de torração médio. A temperatura inicial do termômetro acoplado ao torrador foi de 180° C. A tonalidade da cor final dos grãos foi determinada de forma visual e instrumental (Chomameter-2 Reflectance, Minolta, Osaka, Japan). Na determinação da densidade aparente, não se leva em conta os poros das partículas, podendo ser medida em proveta de maneira simples com uma relação de massa (g)/volume ocupado pela amostra (mL), sendo a proveta submetida a leves batidas laterais até que não fossem observadas variações no volume (Gratuito et al., 2007 e Namane et al., 2005).

Para as demais análises, os grãos torrados foram moídos (moedor elétrico Probat) em granulometria fina (70% retenção em peneira 20), empacotados em embalagens de polietileno/alumínio, selados e armazenados a –20° C, até o uso. Os grãos verdes foram moídos em granulometria fina em moinho de bancada (IKA A11 Basic) com auxílio de nitrogênio líquido. A acidez titulável total foi determinada por titulação com NaOH a 0,1N, o teor de sólidos solúveis totais (SST) foi medido em refratômetro digital Ataga PR-100 na escala de 0 a 32°Brix ,e o ph foi determinado em potenciômetro Digimed modelo DMpH-2 (AOAC, 1992).

Resultados e conclusões

Tabela 1. Valores médios de acidez titulável total (mL de NAOH 0,1N/100 g), pH, Sólidos Solúveis Totais e densidade aparente em amostras de café integral e descafeinado das espécies conilon e arábica.

TIPO DE BEBIDA	ATT	pН	SST(%)	DENSIDADE(g/mL)
Conilon Integral verde	462,5A	5,9A	27,5A	0,71B
Conilon Descafeinado verde	468,8A	5,5C	25,0B	0,77A
Conilon Integral torrado	325,0B	6,0A	25,0B	0,38D
Conilon Descafeinado torrado	318,8B	5,5C	25,0B	0,40C
Arabica Integral verde	450,0A	5,7B	27,5A	0,67C
Arabica Descafeinado verde	462,5A	5,5C	25,0B	0,67C
Arabica Integral torrado	312,5B	5,8B	25,0B	0,32E
Arabica Descafeinado torrado	312,5B	5,5C	25,0B	0,37D

Médias seguidas por letras maiúsculas diferentes dentro de cada coluna diferem entre si (p<0,05), pelo teste de Scott-knott.

A acidez titulável total diminuiu com a torração e não houve diferença significativa entre as amostras torradas, sendo assim não houve influência do processo de descafeinação.

Os valores de pH das amostras torradas descafeinadas mostraram inferiores a faixa recomendada de pH ótimo para a bebida (5,6-5,9), podendo este café apresentar-se com ligeiro excesso de amargor ou acidez o que pode ter contribuído na perda de características sensoriais verificadas por Abrahão et al. (2008).

O pH do café tem sido correlacionado com a acidez perceptível, por isso tem sido estudado como forma de avaliação deste importante atributo sensorial. Ao mesmo tempo, pesquisadores sugerem que a acidez total é que apresenta melhor correlação para determinar a acidez do café (Mendonça et al., 2005)

Os teores de SST encontrados nas amostras verdes de conilon integral apresentaram concentração de 27,5%, este valor é inferior àquele determinado por Jacintho et al. (2002) o qual foi igual a 29,24%. No entanto é semelhante aos resultados apresentados por Veneziano e Fazuoli (2000), os quais estudaram progênies das mesmas plantas e detectaram teores médios entre 27,9% e 29,4%. Como as plantas de *C. canephora* são alógamas é possível que essas variações se devam em parte, às diferenças genéticas existentes entre elas. Durante a torração, os teores de sólidos solúveis diminuem, como conseqüência da perda de ácidos orgânicos e da volatilização de alguns compostos no processo pirolítico, contudo essa diminuição foi verificada apenas nas amostras integrais.

A descafeinação diminuiu o teor de SST das amostras verdes, porém após a torração os teores se igualaram em todas as amostras, indicando que a descafeinação não influenciou no rendimento da bebida. Cafés da espécie conilon geralmente apresentam teores de SST maiores que a espécie arábica, isso não foi verificado nesse estudo, uma explicação seria a variabilidade entre cafeeiros de uma mesma espécie, pois se trata de plantas obtidas via sexuada (semente).

A torração diminuiu a densidade aparente em todas as amostras, visto que ocasiona um aumento no volume dos grãos, que é inversamente proporcional a densidade. A descafeinação do café conilon levou a um aumento na densidade devido a uma diminuição no volume dos grãos, esse comportamento não foi verificado nos grãos de café arábica.

Concluiu-se que a descafeinação influencia em alguns parâmetros físico-químicos dependendo da espécie.