34º Congresso Brasileiro de Pesquisas Cafeeiras

CARACTERIZAÇÃO DE ÁGUAS RESIDUÁRIAS DA DESPOLPA DE FRUTOS DE CAFÉ E DE SOLOS RECEPTORES NO ESTADO DO ESPÍRITO SANTO

LC Prezotti DSc Solos e Nutrição de Plantas (<u>prezotti@incaper.es.gov.br</u>); AC da Rocha MSc Fitotecnia (aledircassiano@incaper.es.gov.br); SF Soares DSc Fitotecnia (sammy@epamig.ufv.br); A Guarçoni M. DSc Solos e Nutrição de Plantas (guarconi@incaper.es.gov.br); AP Morelli BS Administração Rural (apmoreli@ig.com.br)

Nos últimos anos, o mercado de café tornou-se altamente exigente quanto à qualidade do produto, sendo sua melhoria relacionada à despolpa e a desmucilagem dos frutos. Este processo contribui, também, para a redução do custo de secagem dos grãos em razão do menor volume a ser manipulado. Por esta razão, é crescente o número de produtores que adotam esta prática, o que tem proporcionado maior competitividade nos mercados interno e internacional, resultando em maior retorno econômico ao produtor. Entretanto, esta técnica de processamento é geradora de grandes volumes de águas residuárias (ARC), ricas em material orgânico e inorgânico. Estas águas, se lançadas em corpos hídricos, proporcionam redução acentuada da concentração de oxigênio dissolvido, pois, bactérias aeróbias utilizam o O_2 para suas reações metabólicas de degradação da matéria orgânica. Com isto, pode ocorrer morte de peixes, organismos aeróbios e danos à flora, além de proporcionar odores desagradáveis. A alta concentração de nutrientes solúveis promove a eutrofização dos mananciais, colocando em risco a qualidade das águas e possibilitando o desenvolvimento excessivo de plantas aquáticas. Por esta razão, no estado do Espírito Santo é proibido, por lei, o lançamento destas águas em mananciais.

A ARC pode ser considerada como uma fonte de poluição, se lançada em corpos receptores como riachos, lagoas, etc. Contudo pode ser uma excelente fonte de matéria orgânica e de nutrientes, se aplicada em culturas agrícolas via fertirrigação, em quantidades estimadas com base na sua concentração de nutrientes e na demanda de nutrientes da cultura. Assim, a utilização da ARC como fertilizante deve ser feita de forma criteriosa, para que não venha a causar prejuízos ao solo, prejudicar a cultura explorada ou provocar contaminação de águas superficiais e subterrâneas.

Os objetivos deste trabalho foram caracterizar quimicamente as águas residuárias em diferentes propriedades das regiões produtoras do Estado do Espírito Santo, em diversas etapas do processamento, e avaliar as alterações da fertilidade dos solos que receberam deposições de águas residuárias.

Foram realizadas amostragens em 40 propriedades, coletando-se a água resultante das seguintes etapas do processamento: lavagem dos frutos, descascamento, desmucilagem e lagoas de deposição. Nestas amostras foram realizadas as análises de nutrientes.

Nas propriedades em que as águas residuárias eram utilizadas para fertirrigação, foram coletadas amostras de solo nas profundidades de 0-20 cm e 20-40 cm para análises de fertilidade.

Nas lagoas de deposição, após um período suficiente para evaporação e infiltração da água residuária, foram realizadas amostragens no centro das lagoas, em diversas profundidades.

Resultados e Conclusões:

Comparando-se os valores máximos e mínimos de nutrientes e condutividade elétrica das amostras de águas residuárias coletadas nas 40 propriedades (Tabela 1), observa-se grande variação nas concentrações dos nutrientes, resultado das diferentes etapas do processo de descascamento/despolpa e do volume e número de reciclagens da água. Os nutrientes encontrados em maiores quantidades foram o potássio e o nitrogênio.

Tabela 1: Teores máximos, mínimos e médios de nutrientes e condutividade elétrica em amostras de águas residuárias coletadas em 40 propriedades nas diferentes etapas do processamento dos frutos de café arábica.

Limites de teores	N	Р	K	Ca	Mg	Cu	Zn	Mn	Fe	В
dos nutrientes										
					mg	g/L				
Máximo	205	23	875	94	28	40	44	80	28	12
Mínimo	1,5	0	1,5	1	0	0	0	0	0,3	0
Média	106	5	225	30	9	2	3	5	31	1
Desvio Padrão	63	6	202	22	8	11	12	22	127	4

Nas análises realizadas em cada etapa do processamento (Tabela 2), observam-se baixas concentrações de nutrientes nas amostras oriundas somente com a lavagem dos frutos. No processo de descascamento, parte da polpa dos frutos é liberada, proporcionando a elevação dos teores de nutrientes e, consequentemente, da condutividade elétrica da água utilizada no processo. Estes valores são aumentados por ocasião da passagem pelo desmucilador, onde o restante da polpa dos frutos é liberado. Os teores de nutrientes e CE das amostras coletadas nas

lagoas de deposição representam uma média das águas resultantes das diferentes etapas do processamento e da lavagem do equipamento, após o término do serviço.

Tabela 2: Teores de nutrientes e condutividade elétrica em amostras de águas residuárias coletadas em diferentes etapas do processamento dos frutos de café arábica.

Etapa do	N	Р	K	Ca	Mg	Cu	Zn	Mn	Fe	В
processamento										
					mg	g/L				
Lavador	7,5	0,32	14	17,6	3,00	0,03	0,01	0,04	0,66	0,00
Descascador	118,2	6,3	218	35,2	9,5	4,1	4,6	8,2	49,5	1,4
Desmucilador	93,7	7,9	308	31,1	12,3	0,1	0,3	0,6	5,9	0,2
Lagoa de deposição	90,4	7,2	280	30,1	11,1	0,1	0,2	0,3	6,7	0,2

As análises do solo localizado no fundo do lago de deposição de águas residuárias, armazenadas durante três safras são apresentadas na tabela 3. De modo geral, o maior receio do uso agrícola da ARC advém do seu alto teor de potássio. Entretanto, observa-se que, mesmo no fundo do lago de deposição, os teores de K não foram tão elevados quanto se esperava. A sua análise em camadas mais profundas, mostra teores próximos ao observado na camada de 0-20 cm, indicando que houve lixiviação deste elemento, ocasionado pela infiltração da ARC no perfil do solo. Não se observou variações acentuadas dos teores do demais nutrientes.

Tabela 3: Características químicas do solo em diversas profundidades coletadas no fundo do tanque de deposição de águas residuárias, armazenadas durante três safras.

	рН	P	K	Ca	Mg	Al	H+Al	Т	MO	Zn	Fe	Mn	Cu	В
		mg/	/dm³	cmol	/dm³		dag/kg	dag/kg mg/dm³						
0-20	5,3	5	300	0,8	0,2	0,2	1,3	3,1	0,7	5	124	15	2,0	0,24
20-40	5,3	2	275	0,9	0,0	0,4	1,3	2,9	0,4	7	123	52	1,9	0,10
40-80	5,5	1	250	0,6	0,0	0,5	1,2	2,5	0,4	8	140	42	1,8	0,16
80-120	5,7	2	270	0,4	0,0	0,2	1,2	2,3	0,4	7	114	71	3,1	0,12

Nas amostras de solo coletadas em áreas de pastagens com e sem aplicação da ARC (Tabela 4), observa-se que o potássio foi o nutriente que apresentou maior variação de teor com a aplicação da ARC, nas duas profundidades, tendo uma elevação de mais de quatro vezes do teor inicial. A elevação dos teores de Ca e Mg também foi observada nas duas profundidades. Houve aumento do teor de matéria orgânica, sendo esta, provavelmente, a razão da elevação da CTC total (T). Com exceção do cobre e boro, houve elevação dos teores dos demais nutrientes,

principalmente na camada superficial. A água residuária proporcionou a redução da acidez ativa (pH), da acidez potencial (H+Al) e da acidez trocável (Al), tanto na camada superficial como também na profundidade de 20 a 40 cm.

Tabela 4: Características químicas de amostras do solo sob pastagem sem e com aplicação de águas residuárias.

	Prof.	рН	Р	K	Ca	Mg	Al	H+Al	Т	МО	Zn	Fe	Mn	Cu	В	
	(cm)	pii	mg/dm³			C	cmol _c /d	m³		dag/k g	mg/dm³					
Sem	0-20	5,8	32	43	3,1	1,2	0,1	2,1	6,6	1,9	11	25	23	7,4	0,1 9	
ARC	20- 40	5,3	5	30	1,3	0,6	0,5	2,1	4,0	1,1	8	21	31	9,4	0,3 5	
Com	0-20	6,6	32	19 0	4,0	1,7	0,0	1,1	7,2	2,2	11	35	27	5,5	0,0 6	
ARC	20- 40	6,6	12	12 7	2,3	1,2	0,0	1,1	4,9	1,2	5	22	28	5,8	0,2 5	