

Reação ao estresse hídrico em mudas de cafeeiros arábicos portadores de genes de Coffea racemosa, C. canephora e C. liberica

Filipe Gimenez Carvalho, Gustavo Hiroshi Sera, Tumoru Sera, Inês Cristina de Batista Fonseca, Elder Andreazi, Valdir Mariucci Junior, Luciana Harumi Shigueoka, Daniel Chamlet.

- ✓ O gênero Coffea pertence à família Rubiaceae -104 espécies descritas.
- ✓ Apenas C. arabica e C. canephora são produzidas comercialmente.
- ✓ Outras espécies são utilizadas no melhoramento genético de café – hibridações.
- ✓ Resistência à pragas, doenças e nematoides; condições climáticas; produtividade; teor de cafeína; maturação dos frutos; etc.

- ✓ Sintomas da falta de água não são facilmente visualizados nos cafeeiros, no entanto, pequenas diminuições na oferta de água causam:
 - Redução crescimento;
 - Alterações em processos biológicos e fisiológicos;
 - Injúrias;
 - Queda na produção.

- ✓ As plantas apresentam mecanismos que diminuem os efeitos da falta de água no solo.
- ✓ A capacidade de manter suas folhas túrgidas é uma das características necessárias para que o cafeeiro produza em locais onde ocorre déficit hídrico.

- ✓ C.arabica encontra no Brasil grandes áreas adequadas a seu cultivo;
- ✓No entanto, a cafeicultura se expandiu para alguns locais limitantes à produção do café (seca, estiagem, temperaturas elevadas).

✓ Cultivares de café desenvolvidos pelo IAPAR e outros genótipos de café arábica em seleção, têm potencial para apresentar tolerância à seca, pois são portadores de genes de *C. racemosa, C. canephora e C. liberica.*

Objetivo

✓ Avaliar a reação ao estresse hídrico de genótipos de café no estádio juvenil.

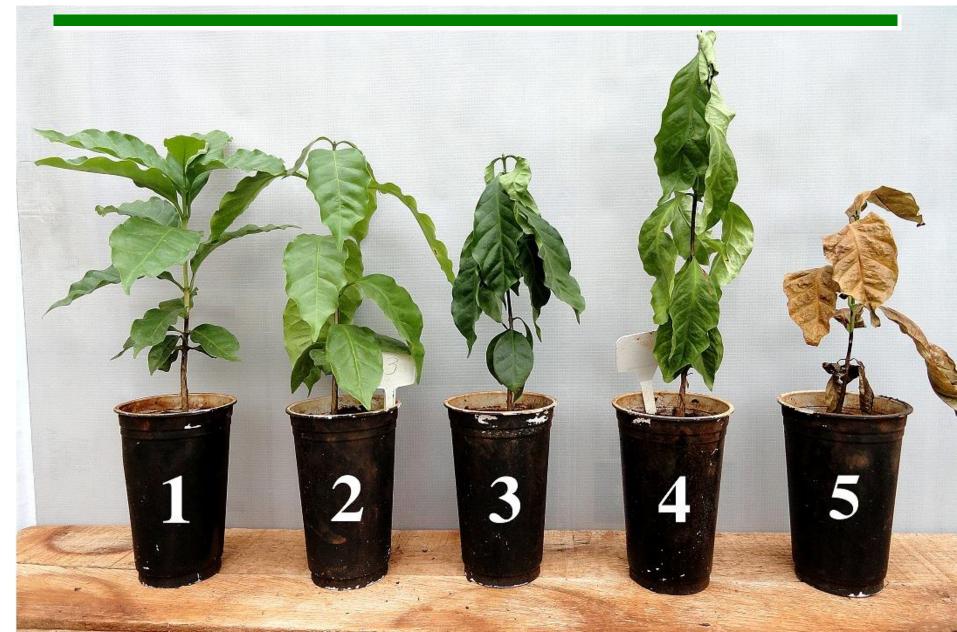
- ✓ Foi realizado experimento em casa de vegetação, no IAPAR em Londrina PR
 - altitude de 585 m
 - temperatura média anual de 21°C

✓ Foram utilizados genótipos de café no estádio juvenil e suas respostas ao estresse hídrico foram avaliadas visualmente pelo grau de murchamento de suas folhas.

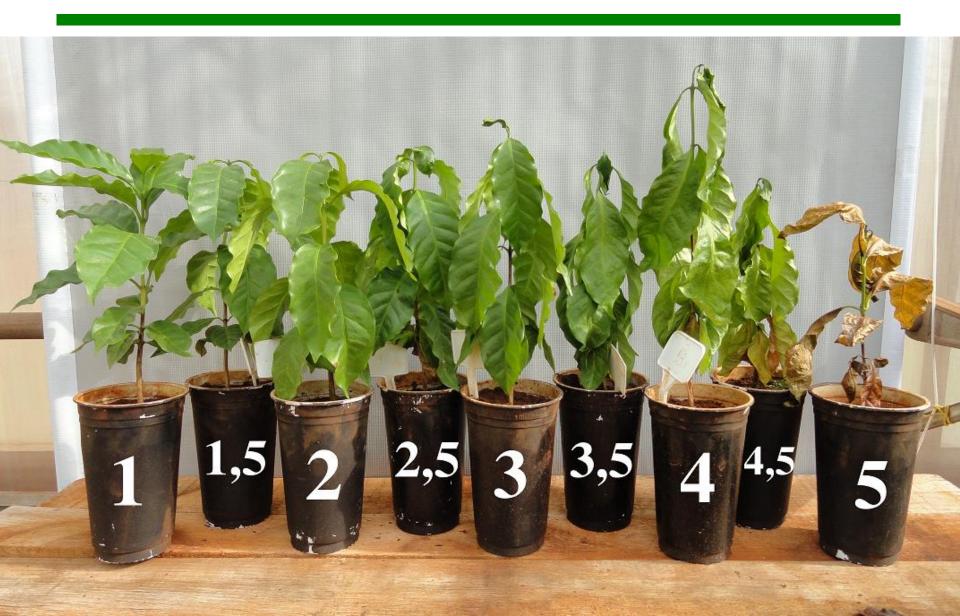
- ✓ Foram avaliados dezoito genótipos de *Coffea* arabica portadores de genes de *C. racemosa*, *C. canephora* e *C. liberica*, além de dois puros C. arabica e um puro *C. canephora*.
- ✓Foi utilizado o delineamento em blocos ao acaso com oito repetições e parcelas de três plantas.

Tabela1. Descrição dos genótipos testados.

Genótipos	s Descrição (1) C. arabica portador de genes das espécies (
Tupi IAC 1669-33	"Sarchimor"	C. canephora	
IAPAR 59	"Sarchimor"	C. canephora	
IPR 97	"Sarchimor"	C. canephora	
IPR 98	"Sarchimor"	C. canephora	
IPR 99	"Sarchimor"	C. canephora	
IPR100	"Catuaí" x ("Catuaí" x "cafeeiro da série BA10")	C. liberica	
IPR 101	"Catuaí" x ("Catuaí" x "cafeeiro da série BA10")	C. liberica	
IPR 102	"Catucaí"	C. canephora	
IPR 103	"Catucaí"	C. canephora	
IPR 104	"Sarchimor"	C. canephora	
IPR 105	"Catuaí" x ("Catuaí" x "cafeeiro da série BA10")	C. liberica	
IPR 106	"Icatu"	C. canephora	
IPR 107	'IAPAR 59' x 'Mundo Novo IAC 376-4'	C. canephora	
IPR 108	'IAPAR 59' x "Catucaí"	C. canephora	
11-256 aramosa	'IAPAR 59' x ('Tupi' x ("Aramosa" x 'Tupi')	C. canephora e C. racemosa	
11-260 aramosa	'Catuaí V. IAC 81' x ['Tupi' x ("Aramosa" x Tupi)]	C. canephora e C. racemosa	
11-263 aramosa	'IPR 108' x ['Tupi' x ("Aramosa" x'Tupi')]	C. canephora e C. racemosa	
11-280 aramosa	(C. arabica xC. racemosa) x 'Tupi'	C. canephora e C. racemosa	
Catuaí Vermelho IAC 99	"Caturra" x "Mundo Novo"	*	
Etiópia CAF 600	Coleção da etiópia	*	
Apoatã IAC 2258	Coffea canephora	**	


^{(1) &#}x27;Tupi' = 'Tupi IAC 1669-33'; "Aramosa" = C. arabica x C. racemosa;

^{(2) *} C. arabica puro; ** C. canephora puro.


- ✓ As mudas foram desenvolvidas em copos plásticos de 700 mL contendo substrato composto por solo, areia, matéria orgânica e nutrientes (baseado na análise química).
- ✓ Acondicionadas em viveiro com 25% de sombra por seis meses, apresentando de sete a oito pares de folhas.

- ✓ Aclimatização na casa de vegetação, com irrigação normal por duas semanas.
- ✓Imersão em água até o solo atingir sua capacidade máxima de retenção.
- ✓ Suspensão total da irrigação.
- ✓ Cultivar 'Catuaí Vermelho IAC 99' foi utilizada como padrão suscetível (as plantas foram avaliadas quando Catuaí atingir a nota média 3).

Escala de notas

Escala de notas

- ✓ Após a primeira avaliação as plantas foram irrigadas por sete dias e se repetiu o processo:
 - Imersão em água
 - Suspensão da Irrigação
 - Avaliação

Análise Estatística

✓Os dados foram submetidos a análises de variância e teste de Scott Knott a 5% de probabilidade, com auxilio do Software Genes (Cruz, 2006).

Tabela 2. Notas das avaliações de murcha dos genótipos testados.

Genótipos	1ªAvaliação ⁽¹⁾	2ªAvaliação(1)	Médias ⁽¹⁾
Apoatã IAC 2258	3,354 a	3,562 a	3,458 a
Catuaí Vermelho IAC 99	3,125 a	2,542 b	2,833 в
IPR104	3,075 a	2,354 в	2,715 в
IPR105	2,688 b	2,604 b	2,646 в
IPR97	2,979 a	2,312 b	2,646 b
Aramosa 11280	2,917 a	2,208 b	2,562 в
IPR106	2,750 b	2,333 b	2,542 в
Aramosa 11256	2,792 b	2,250 в	2,521 в
IPR99	2,729 b	2,312 b	2,521 в
IPR107	2,729 b	2,271 в	2,500 в
Tupi IAC 1669-33	2,479 b	2,500 в	2,490 в
IPR108	2,687 b	2,271 в	2,479 в
IPR102	2,563 b	2,375 в	2,469 в
IPR101	2,771 b	2,125 в	2,448 в
Aramosa 11263	2,521 b	2,000 c	2,260 c
IPR98	2,354 b	2,021 c	2,187 c
IAPAR 59	2.333 в	2.000 c	2.167 c
IPR103	1,750 c	2,146 b	1,948 d
IPR100	1,792 c	1,896 c	1,844 d
Etiópia CAF 600	1,729 c	1,917 c	1,823 d
Aramosa 11260	1,687 c	1,375 d	1,531 d

⁽¹⁾ Médias seguidas pela mesma letra não diferem entre si pelo teste Scott-Knott a 5%.

- ✓O melhor desempenho à seca do genótipo "Aramosa 11260", provavelmente originou-se da espécie *Coffea racemosa*, pois outros estudos também identificaram *C. racemosa* como fonte de resistência. (Medina Filho et al., 1977; Lima, 1978).
- ✓ Homozigose em "Aramosa 11260"
- ✓ Heterozigose em "Aramosa 11263" "Aramosa 11256 e "Aramosa11280"

√'IPR100' - "Catuaí" x ("Catuaí" x "cafeeiro da série BA10")

Essa resistência provavelmente foi originada do cafeeiro da série BA10 (*C. liberica*), observada por Mazzafera e Carvalho (1987).

'IPR101' e 'IPR105', não demonstraram resistência semelhante a 'IPR 100'.

√'IPR103' é derivado de Catuaí x Icatu ("Catucaí")
e também apresentou resistência semelhante ao
"Aramosa 11260".

✓ As cultivares IPR102 ("Catucaí") e IPR108 ("Sarchimor" x "Catucaí") embora apresentem origem semelhante ao 'IPR103', não foram resistentes à seca.

- ✓ As cultivares 'lapar 59' e 'IPR 98', ambas do germoplasma Sarchimor, apresentaram um nível intermediário de resistência à seca.
- ✓ Trabalhos realizados anteriormente (Rodrigues et al., 2007; Rakocevic et al., 2010; Vidal et al., 2011) classificaram 'lapar 59'como resistente à seca.
- ✓ Por outro lado 'IPR 97', 'IPR 99, 'IPR 104' e 'Tupi IAC 1669-33', todas do "Sarchimor", e 'IPR 107' ('Iapar 59' x "Mundo Novo") foram inferiores.

- ✓ 'Apoatã IAC 2258' de *C. canephora* foi o mais suscetível à seca, do mesmo modo que Almeida et al. (2007) observaram.
- ✓Os resultados deste estudo são preliminares e o mecanismo de resistência testado foi apenas a parte aérea das mudas, pela avaliações de murcha das folhas, porém apresenta correlações altamente positivas quando comparado com outras metodologias (Jones 1979 and 0'Toole et al. 1984).

Conclusão

✓O comportamento das plantas juvenis dos melhores genótipos ("Aramosa 11260"; "Etiópia CAF600"; 'IPR100' e 'IPR103') indicam que podem contribuir significativamente para redução dos problemas decorrentes da falta de água na cafeicultura.

Obrigado pela atenção!

e-mail: filipegcarvalho@hotmail.com