MAPA PARCIAL DE LIGAÇÃO GÊNICA EM Coffea arabica L.

Telma F. N.QUEIROZ¹; Eveline T. CAIXETA¹²; Eunize M. ZAMBOLIM¹; Robson F. MISSIO¹; Laércio ZAMBOLIM¹; Ney S. SAKIYAMA³

¹Laboratório de Biotecnologia do Cafeeiro, Bioagro, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, E-mail: <u>biocafe@ufv.br</u>;
²Pesquisadora da EMBRAPA Café, UFV, BIOAGRO, Lab. BioCafé, Viçosa, MG, CEP 36570-000;
³Professor Adjunto do Departamento de Fitotecnia, UFV, BIOAGRO, Lab. BioCafé, Viçosa, MG, CEP 36570-000; Apoio financeiro: CBP&D/Café e CNPq.

Resumo:

Em uma população F₂ de 215 indivíduos, originária do cruzamento entre cafeeiros "Híbrido de Timor" (H445-46) e "Catuaí" (2143-235) foram analisados 102 marcadores RAPD. Com estes, foi confeccionado um mapa parcial em que 89 marcadores se posicionaram em 14 grupos de ligação. Treze marcadores não se ligaram a nenhum grupo formado. Houve distorção de segregação para 54 marcas. O mapa cobriu parte do genoma, mas novas marcas devem ser encontradas para saturação dos intervalos e formação de novos grupos.

Palavras-chaves: Café, Mapa de ligação genética, Marcadores moleculares RAPD

PARTIAL GENETIC LINKAGE MAP USING RAPD MARKERS IN Coffea arabica L.

Abstract:

In a population of 215 F₂ individuals from a crossing between a Hibrido de Timor (H445-46) and Catuaí (2143-235) 102 RAPD markers were analised. A partial map was constructed with 89 markers positioned in 14 linkage groups. Thirteen markers did not fit in any formed group. There was segregation distortion for 54 markers. The map covered part of the genome, but new marks should be found to saturate the obtained intervals and form new groups.

Key words: Coffee, Linkage map, RAPD molecular markers

Introdução

Marcadores moleculares identificam regiões do genoma e podem caracterizar um organismo, porém, a função da seqüência dos nucleotídeos presentes nas mesmas é, na maioria das vezes, desconhecida. Entre os marcadores moleculares, destaca-se a técnica de polimorfismo de DNA amplificado ao acaso (RAPD), a qual é fácil, de baixo custo, requer pouca concentração de DNA genômico, e produz marcadores que representam todo o genoma (Ferreira & Grattapaglia, 1998).

Os mapas genéticos determinam a posição relativa entre si de um número de marcadores e se baseiam no polimorfismo e na segregação destes marcadores em indivíduos de uma família conhecida. Em *C. arabica*, a construção de mapas de ligação saturados e com ampla cobertura do genoma, tem sido dificultada pelo baixo nível de polimorfismo entre cultivares e a presença de poliploidia nesta espécie. No mapeamento completo do genoma do cafeeiro tem sido utilizada a estratégia da construção de mapas parciais, utilizando diferentes *backgrounds* genéticos e posterior integração desses mapas.

Este trabalho teve como objetivo identificar novos marcadores de DNA utilizando a técnica de RAPD em uma população segregante de um híbrido carregando genes de *C. canephora* para construção de um mapa parcial de ligação gênica para a espécie *Coffea arabica*.

Material e Métodos

Os dados foram obtidos pela análise de uma população segregante F₂, originária do cruzamento do "Híbrido de Timor" H445-46 (derivado do cruzamento [*C. arabica* x *C. canephora*] x *C. arabica*) e "Catuaí" 2143-235. A extração de DNA dos genitores e de toda a população segregante F₂ composta de 215 indivíduos, foi realizada segundo o protocolo de Doyle & Doyle (1990), modificado no laboratório BIOCAFÉ/BIOAGRO/UFV.

Para a caracterização molecular da população segregante foram utilizados 200 *primers* de 10 pares de bases da "Operon Technologies" (RAPD) para amplificar o DNA e obter bandas polimórficas. A amplificação foi efetuada em termociclador Perkin-Elmer 9600, segundo o protocolo estabelecido por Williams et al (1990). Os produtos das reações de amplificação foram separados em géis de agarose 1,2%, corados com brometo de etídio e visualizados sob luz ultravioleta em transluminador com fotodocumentação.

Os resultados foram computados como presença ou ausência de bandas e analisados utilizando o programa GQMOL (Cruz 2007).

Resultados e Discussão

Dos 200 *primers* testados na população de 215 indivíduos foram encontrados 102 marcadores utilizados na confecção de um mapa parcial de ligação gênica (Figura 1). Destes 102 marcadores, 13 não se mostraram ligados a nenhum grupo de ligação. Os outros 89 marcadores (Tabela 1), incluindo os 54 que apresentaram distorção de segregação, foram mapeados em 14 grupos de ligação, cobrindo 978,8 cM do genoma. A distância média entre os marcadores foi de 10.99cM. Não foi possível encontrar marcadores para os 22 grupos de ligação do cafeeiro (n=22) assim como no trabalho de Teixeira-Cabral (2004) que obteve um mapa com 8 grupos de ligação. Marcadores SSR e AFLP serão posteriormente usados para saturação e formação de novos grupos de ligação.

Conclusão

Com os 102 marcadores RAPD encontrados foi possível a elaboração de um mapa com 14 grupos de ligação, aumentando assim a área do genoma do café abrangida por marcadores moleculares. Com a utilização de outros tipos de marcadores como SSR e AFLP uma maior parte do genoma do café pode ser alcançada. Este mapa parcial será integrado a outros em construção.

Referências Bibliográficas

Berthaud J., Charrier A. (1988). Genetic resources of *Coffea*. In: Clarke RJ, Macrae R, eds. *Coffee*, Vol. 4: Agronomy. London, UK: Elsevier Applied Science. 1-4.

Doyle, J.J., Doyle, J.L.(1990) Isolation of plant DNA from fresh tissue. Focus. 12:13-15.

Ferreira, M. E.; Grattapaglia, D. (1998) Introdução ao uso de marcadores moleculares em análise genética. 3 ed. Brasília: Embrapa-Cenargen,. 220 p.

Cruz, C.D. (2007) Programa para análises de dados moleculares e quantitativos – GQMOL. Viçosa, UFV. (Software em desenvolvimento).

Teixeira-Cabral, T.A., Sakiyama, N.S. Zambolim, L., Pereira, A.A. and Schuster, I. (2004). Single-locus inheritance and partial linkage map of *Coffea arabica* L. Crop Bred Appl. Biotech. 4 : 416-421.

Monaco, L.C.(1997) Consequences of the introduction of coffee leaf rust into Brazil. Annals Academic Science, New York, 287: 57-71.

Williams, J., Kubelik, A., Livak, K., Rafalski, A. & Tingey, S. (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 18: 6531-6535.

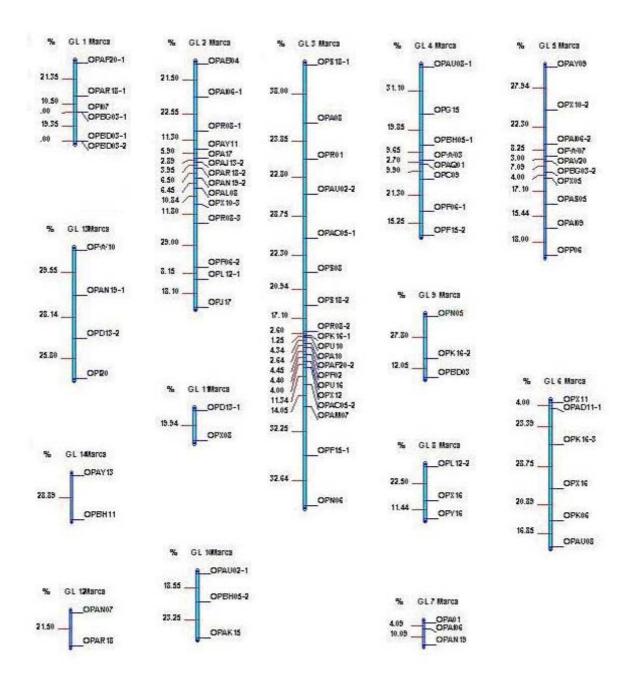


Figura 1 - Mapa parcial de ligação gênica de *Coffea arabica* L. com base em marcadores RADP. Distância de mapa em porcentagem de recombinação são indicadas à esquerda dos grupos de ligação e os nomes dos locos estão à direita.

Tabela 1- Distorção da segregação dos marcadores RAPD por meio do teste de Qui-quadrado (χ^2).

Marcador	χ^2	Probabilidade Marcador		χ^2	Probabilidade Marcador		χ^2	Probabilidade
OPA08	53,062	0,0 *	OPX10-2	23,077	0,0002 *	OPAY13	3,904	4,8169 *
OPA10	5,397	2,0173 *	OPX10-3	7,41	0,6485 *	OPAY11	0,13	71,7982 ns
OPA17	0,014	90,553 ns	OPX12	2,614	10,5899 ns	OPBD03-1	35,047	0,0 *
OPC09	0,684	40,8308 ns	OPX16	0,98	32,23 ns	OPBD03-2	35,047	0,0 *
OPC15	0,156	69,3088 ns	OPW03	0,629	42,7748 ns	OPBG03-1	61,065	0,0 *
OPD13-1	12,281	0,0458 *	OPW07	0,226	63,4195 ns	OPBG03-2	0,156	69,3088 ns
OPD13-2	0,969	32,4932 ns	OPW10	6,804	0,9098 *	OPBH05-1	3,623	5,6998 ns
OPF02	4,69	3,034 *	OPY16	1,778	18,2422 ns	OPBH05-2	2,038	15,3438 ns
OPF06-1	5,037	2,4808 *	OPAB04	40,252	0,0 *	OPBH11	0,128	72,0554 ns
OPF06-2	0,039	84,3926 ns	OPAC05-1	13,763	0,0207 *	OPA01	0,403	52,5793 ns
OPF15-1	2,631	10,4817 ns	OPAC05-2	5,397	2,0173 *	OPA08	10,172	0,1426 *
OPF15-2	19,282	0,0011 *	OPAF20-1	20,365	0,0006 *	OPA14	19,579	0,001 *
OPG15	5,34	2,0845 *	OPAF20-2	1,737	18,7539 ns	OPC15	10,148	0,1445 *
OPI07	67,026	0,0 *	OPAI06-1	74,39	0,0 *	OPK06	285,348	0,0 *
OPI20	6,153	1,3115 *	OPAI06-2	2,163	14,1394 ns	OPK16-2	0,049	82,5283 ns
OPJ19	10,781	0,1026 *	OPAL08	2,894	8,8933 ns	OPK16-3	26,684	0,0 *
OPJ17	3,943	4,708 *	OPAI09	1,141	28,5474 ns	OPL07	7,632	0,5733 *
OPK16-1	1,031	30,988 ns	OPAI10	3,557	5,9289 ns	OPN05	21,223	0,0004 *
OPL12-1	4,355	3,69 *	OPAJ13-1	2,118	14,561 ns	OPN07	0,188	66,4924 ns
OPL12-2	0,002	96,8591 ns	OPAJ13-2	0,654	41,883 ns	OPX11	4,734	2,9573 *
OPN06	2,606	10,6446 ns	OPAK15	9,548	0,2002 *	OPX16	218,293	0,0 *
OPP06	7,381	0,659 *	OPAM07	15,483	0,0083 *	OPAD11-1	0,828	36,2893 ns
OPR01	70,34	0,0 *	OPAN19-1	9,192	0,243 *	OPAD11-2	0,127	72,1815 ns
OPR08-1	1,304	25,3506 ns	OPAN19-2	0,039	84,3926 ns	OPAD11-3	39,563	0,0 *
OPR08-2	4,69	3,034 *	OPAQ01	0,505	47,7454 ns	OPAL08	16,603	0,0046 *
OPR08-3	0,039	84,3926 ns	OPAR18-1	54,914	0,0 *	OPAI06	1,72	18,9644 ns
OPS08	10,256	0,1362 *	OPAR18-2	0,014	90,4178 ns	OPAI10	3,557	5,9289 ns
OPS18-1	8,262	0,4048 *	OPAS05	0,754	38,5246 ns	OPAJ13	32,026	0,0 *
OPS18-2	3,14	7,6416 ns	OPAU08-1	62,893	0,0 *	OPAN07	14,588	0,0134 *
OPU10	2,631	10,4817 ns	OPAU08-2	78,893	0,0 *	OPAN19	2,606	10,6446 ns
OPU16	4,542	3,3072 *	OPAU02-1	2,606	10,6446 ns	OPAR18	32,014	0,0 *
OPX05	0,629	42,7748 ns	OPAU02-2	70,34	0,0 *	OPAU08	199,27	0,0 *
OPX08	0,007	93,4598 ns	OPAV20	0,231	63,0954 ns	OPBD03	0,754	38,5246 ns
OPX10-1	83,308	0,0 *	OPAY09	136,189	0,0 *	OPBG03	0,305	58,0581 ns

^{*,} ns significativo e não significativo ao nível de 5% de probabilidade, respectivamente.