HÉBER FERREIRA DOS REIS

EFICIENCIA DOS COMPOSTOS TRIADIMENOL E ALDI-CARB, APLICADOS VIA SOLO EM DIFERENTES ÉPOCAS E DOSAGENS, NO CONTROLE DA FERRUGEM (Hemileia vastatrix Berk & Br.) EM MUDAS DE CAFEEIRO

Dissertação apresentada h Escola Superior de Agricultura de Lavras, como parte dar exigências do curso de Pós-Graduação em Agronomia, área de concentração Fitossanidade, sub-área Fitopatologia, para obtenção do grau de "MESTRE".

ESCOLA SUPERIOR DE AGRICULTURA DE LAVRAS

LAVRAS. MINAS GERAIS

1992

A Deus,

Aos meus pais,

As minhas irmās,

A minha avó,

Aos meus tios.

OFEREÇO

AGRADECIMENTOS

Ao Prof. Dr. Mario Sobral de Abreu, pela amizade, gentileza, companheirismo e orientação em todo o decorrer do curso.

Ao Prof. Dr. Renê Luiz de Oliveira Rigitano, pelo auxilio prestado através de ensinamentos, criticas e sugestões.

À pesquisadora Sara Maria Chalfoun, pela participação como membro da banca examinadora e pelas sugestões apresentadas.

Ao Prof. Dr. José da Cruz Machado, por ter cedido a câmara de crescimento vegetativo para a realização do experimento.

Aos amigos Liliana Auxiliadora Velar Pereira, Eloisa Leite, Magalhães Teixeira de Souza, Gilvan José Campelo dos Santos, João Basílio Mesquita, pelo auxilie na realização da experimenta.

Aos amigos Renato Ribeiro Passos e Djail Santos pela colaboração e prazerosa convivência.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela bolsa de estudo concedida.

X Escola Superior de Agricultura de Lavras (ESAL), pela oportunidade de realizar o curso,

A todos aqueles que, de alguma forma, colaboraram para que este trabalho pudesse ser realizado.

BIOGRAFIA DO AUTOR

HÉBER FERREIRA DOS REIS, filho de Limírio Ferreira dos Reis e Marilia Faria Ferreira dos Reis, nasceu em Londrina, Estado do Paraná, no dia 30 de dezembro de 1963.

Em dezembro de 1989, recebeu o titulo de Engenheiro Agrônomo pela Fundação faculdade de Agronomia "Luiz Meneghe", em Bandeirantes - PR.

Em março de 1990, iniciou o Curso de Mestrado em Fitossanidade na Escola Superior de Agricultura de Lavras - MG.

SUMÁRIO

1.	INTR	ODUÇÃO	01
2 .	REVI:	SÃO DE LITERATURA	04
3.	MATE	RIAL E MÉTODOS	13
	3.1.	Formação das mudas de cafeeiro	13
	3.2.	Coleta e armazenamento de uredosporos de Hemileia	
		vastatrix	15
	3.3.	Efeito preventivo e curativo de triadimenol $oldsymbol{e}$	
		aldicarb em diferentes épocas, em mistura e isola-	
		damente. via solo, em plantas de cafeeiro inoculado	
		com Hemileia vastatrix	15
	3.4.	Descrição dos parâmetros de avaliação	17
		3.4.1. Número total de lesões e número de lesões	
		esporuladas	17
		3.4.2, Razão de esporulação	18
		3.4.3. Abscisão foliar	18

4.	RESUI	LTADOS E DISCUSSÃO	19
	4.1.	Número total de lesões e número de lesões espo-	
		ruladas	19
	4.2.	Razão de esporulação	30
	4.3.	Abscisão foliar	32
5.	CONC	Lusões	36
6 .	RESU	MO	37
7 .	SUMM	ARY	39
8.	REFE	RÊNCIAS BIBLIOGRÁFICAS	4 1
AP	ENDIC	E	59

1. INTRODUCÃO

O café, entre os produtos agrícolas, constitui um dos principais produtos geradores de divisas para o Brasil e outros paises da América Latina.

A ferrugem do cafeeiro causada pelo fungo Hemileia vastatrix Berk & Br., se faz presente em todas as regiões cafeeiras do Brasil, e está amplamente distribuida em quase todos os paises produtores de café, sendo alvo de grande preocupação para aqueles que encontram-se envolvidos com a cultura.

Desde a sua constatação no Brasil, em janeiro, de 1970, inúmeros trabalhos têm sido desenvolvidas visando estabelecer medidas de controle à doença.

Face às dificuldades desde então observadas na obtenção de cafeeiros resistentes à Hemileia vastatrix, tem-se optado pelo uso de fungicidas no controle da enfermidade.

Os fungicidas cúpricos, de custo menos elevado, vêm sendo utilizados no Brasil de forma extensiva e os fungicidas

sistêmicos que apresentam elevada eficiência porém de custo mais elevado vêm sendo utilizados com menor frequência, visando evitar perdas sobre a produção da ordem de 20 a 30%, que poderiam ser causadas pela incidência da ferrugem (MATIELLO et alii, 1985).

Os fungicidas cúpricos apresentam ação protetora, e sua eficiencia de controle à ferrugem tem sido comprovada por inúmeros trabalhos (ALMEIDA et alii, 1973b; MIGUEL et alii, 1979: MANSK & MATIELLO, 1985 e REIS et alii, 1989). Já os fungicidas sistêmicos apresentam vantagens em relação aos protetores, pois podem apresentar não somente o efeito protetor (MATIELLO et alii 1985; SANTINI, 1989 e SOUZA, 1991), mas também de acordo. com RAJENDRAN & NATARAJ (1983); NUNES (1986) e MANSK & MATIELLO (1990), podem apresentar efeito sobre lesões novas, e a inibição da esporulação sobre lesões velhas,

O controle de pragas e doenças por meio de produtos sistêmicos via solo, já é bastante difundido para um grande número de culturas anuais e perenes. Na cultura do café, tem-se constatado através de aplicações via solo, uma maior eficiência de controle da ferrugem e pragas (bicho mineiro e cigarras), por certos fungicidas triazóis e inséticidas carbamatos, respectivamente.

Além da eficiência comprovada de inseticidas e/ou nematicidas no controle de pragas da cultura do café, procura-se através de pesquisas integrar estes produtos a fungicidas sistêmicos de eficiência comprovada no controle da ferrugem, pois

através de efeitos sinérgicos positivas e aditivos, poderá melhoria da produtividade em razão de um melhor estado vegetativo do cafeeiro e uma possível redução de custos. Estas são baseadas em resultados obtidos por UEHARA h BETTIOL (1989a, 1989b), que afirmaram ter havido uma considerável interferência inseticida aldicarb sobre a do ferrugem do cafeeiro, tanto en testes "in vivo" como "in vitro", e resultados obtidos por D'ANTONIO (1990); D'ANTONIO et alii (1990) e MATIELLO que constataram efeitos sinérgicos positivos e aditivos pela mistura do inseticida dissulfoton ao fungicida triadimenol no controle do mesmo fungo.

O presente trabalho tem por objetivos: 1) Determinar a melhor dose de aldicarb e triadimenol, quando aplicados via solo, individualmente ou em associação, no controle preventivo e/ou curativo da ferrugem do cafeeiro: 2) Estabelecer a melhor época para o controle da ferrugem do cafeeiro, quando utilizado o aldicarb e o triadimenol, isoladamente ou em associação.

2. REVISÃO DE LITERATURA

A ferrugem do cafeeiro, causada pelo fungo Hemileia vastatrix Berk & Br., é sem dúvida, a enfermidade mais importante desta cultura, considerando que à medida que ela se estabelece em países cafeicultores cria sérios problemas sócio-econômicos, haja visto, os enormes danos à cafeicultura de algumas áreas da Asia e da Africa, provocadas por epidemias de ferrugem, tendo levado ao completo abandono da cultura, como no caso do Ceilão (atual Sri Lanka) em 1869, (SACCAS & CHARPENTIER, 1971; SCHIEBER, 1972; SCHIEBER & ZENTMYER, 1984 e CHALFOUN & ZAMBOLIM, 1985).

Antes da constatação da ferrugem no Brasil, o que ocorreu primeiramente na Bahia em 1970, supunha-se que a sua introdução se constituiria em um verdadeiro desastre para a cafeicultura nacional. Entretanto, prejuízos em média de 30% sabre a produção têm sido constatados nas regiões onde a doença é endêmica (CHAVES et alii, 1970; CHALFOUN & ZAMBOLIM, 1985; KUSHALAPPA & ESKES, 1989 e RODRIGUES JR, 1990). Atualmente, sua distribuição é

generalizada em todas as regiões cafeeiras do pais, tendo sido encontrada também em outros paises da América Latina, como Argentina e Paraguai em 1972, Nicarágua 1976, Bolívia 1978, El Salvador e Peru 1979, Guatemala e Honduras 1980, Equador e México 1981, Costa Rica e Colômbia 1983 e Venezuela 1984 (WALLER, 1981; WELLMAN & ECHANDI, 1981; SCHIEBER & LEON, 1982; VASQUEZ, 1983; SCHIEBER & ZENTMYER, 1984 e RODRIGUES JR, 1990).

cafeicultura brasileira sofreu grandes alterações últimos anos, desde que se constatou a ocorrência da ferrugem. Inúmeros ensaios foram desenvolvidos visando estabelecer o melhor controle a essa doença (SCHIEBER h ZENTMYER, 1984). De acordo com ALMEIDA et alii (1973a); ABREU et alii (1974); CARNEIRO FILHO alii (1985) e NUNES (1986), o controle da ferrugem no Brasil tem sido adotado de forma predominante por meio de pulverizações com fungicidas cúpricos е em menor intensidade com outros (sistêmicos)

O controle químico da ferrugem através da aplicação de fungicidas cúpricos tem apresentado resultados satisfatórios, com efeito favorável sobre os cafezais, proporcionando a correção cobre, diminuição da abscisão deficiências de foliar consequentemente um aumento de produção. Entretanto, o desempenho destes depende diretamente da concentração de cobre metálico época \emph{e} do intervalo de aplicação formulação, da (BOCK, 1962; MARIOTTO et alii, 1975 e INSTITUTO BRASILEIRO DO CAFE, 1985). De maneira geral, recomenda-se, para as regiões cafeeiras do

Brasil, pulverizações com inicio em janeiro-fevereiro e término em abril-maio, a intervalos de 30 dias, aplicando-se 2 = 3 kg de fungicida cúprico (com 50% de cobre metálico) por hectare '(MANSK & MATIELLO, 1983; MANSK & MATIELLO, 1985; REIS et alii, 1989; ALMEIDA & MATIELLO, 1990a e CHALFOUN, 1990).

Em virtude da sua eficiência de aplicação e economia, fungicidas cúpricos representados pela calda bordalesa, hidróxido, oxicloretos e óxidos de cobre só ou misturados outros produtos, foram até recentemente, os mais utilizados controle químico da doença, sendo substituidos parcial 011 totalmente por outros grupos de defensivos. Desta forma, com o idvento dos fungicidas sistêmicos, estes vêm permitindo substituir os cúpricos, graças as suas propriedades de absorção, translocação e modo de ação no controle da ferrugem do cafeeiro e entras doenças que ocorrem em diversas culturas de interesse conômico (CAMPACCI & OLIVEIRA, 1974; MUTHAPPA & KUMARI, 1978; MANSK & MATIELLO, 1981; MUTHAPPA, 1981; RAJENDRAN 1983; CARNEIRO et alii, 1985; MANSK & MATIELLO, 1987; MATIELLO et elii, 1989 e CARNEIRO FILHO & ISHIZAKA, 1990).

Com o advento de fungicidas sistêmicos, ocorreu modificação fundamental nos conceitos de controle fitossanitário. O que era feito preventivamente, passou a ser feito de modo curativo com redução do número de aplicações e do produto. Tais vantagens estimularam o desenvolvimento de novos produtos e inúmeros trabalhos de pesquisa passaram a comprovar não somente a ação

curativa, mas também a ação protetora sistêmica destes produtos (ABREU et alii, 1974; MANSK et alii, 1974; MANSK & MATIELLO, 1981; 1986; MANSK & MATIELLO, 1989 e CHALFOUN, 1990).

fungicidas sistêmicos, Os apresentam capacidade de translocação do local de aplicação para outras partes da planta, que implica na ausência ou diminuição da fitotoxidade eatuação fungitóxica dentro do hospedeiro. Portanto, as vantagens funcicidas sistêmicos em relação aos não-sistêmicos evidentes, pois não há mais necessidade de se preocupar tanto com perfeição da cobertura das pulverizações foliares, nem com tenacidade do fungicida protetor, pois a uniformidade de distribuição dentro da planta é garantida pela translocação, que lhe permite escapar da remoção pela chuva, e a translocação brotações diminui o número para novas d e pulverizações necessárias para eficiente controle (GALLI, 1978).

A pulverização foliar tem sido o método de aplicação mais comum para o controle. de doenças com fungicidas sistêmicos. Entretanto, de acordo com EDINGTON et alii (1973 e 1980) e GALLI (1978), este método limita a eficiência de controle, uma vez que a absorção é severamente afetada em virtude da presença da cutícula foliar, ceras, tensão superficial e direção do jato de pulverização. A absorção pelas folhas é também influenciada pelo tempo de permanência das gotas sobre as folhas, ou seja, fungicidas sistêmicos formulados em pó molhável, devem estar dissolvidos na gota pulverizada e atravessar a cuticula foliar,

seca, a absorção será muito pequena. pois, uma vez Tais segunda alii (1980).limitações, EDINGTON et causaram desestimulo ao desenvolvimento inicialmente um de novos fungicidas sistêmicos, especialmente para o controle de ferrugens e mildios.

A absorção dos fungicidas sistêmicos é conseguida somente pela aplicação na folhagem, mas também na semente e solo; porém, uma vez que a translocação da maioria acorre passivamente através do xilema, acompanhando a corrente transpiratoria ascendente, a via mais eficiente é o solo, pois sistema radicular absorve o fungicida continuamente disponível no solo, que é então translocado através do xilema e acumulado nas margens das folhas (CAROL & EDINGTON, 1970 e 1971 e SOLEL et Tais conhecimentos estimularam alterações alii. 1979). de formulação e o desenvolvimento de novos fungicidas sistêmicos via salo, que possibilitaram não somente um aumento na eficiência controle, mas também algumas vantagens como: maior segurança aplicação pos não ocorrer lavagem pelas chuvas, maior facilidade de aplicação em áreas de dificil acesso a máquinas agrícolas e cultivos adensados, menor compactação do 'solo, dispensa de na aplicação, proteção contínua das folhas e novas brotações, maior adequação; ao controle integrado e menor impacto ao meio (HASHIZUME & MATIELLO, 1980; MUTHAPPA & AHMED, ambiente PAJENDRAN & NATARAJ, 1983; PAULINI et alii, 1985; LAVOURA, 3989 e D'ANTONIO h MATIELLO, 1990).

Com o surgimento de fungicidas sistêmicos formulados para aplicação via solo, constatou-se não apenas as vantagens oferecidas pelos mesmos, mas também superioridade' uma persistência *e* eficiência de controle da ferrugem e outras (MUTHAPPA & AHMED, 1981). Recentemente, fungicidas doencas grupo dos triazóis (triadimefon e triadimenol) têm proporcionado eficiente controle à ferrugem quando aplicados via (SANTINI, 1989 e D'ANTONIO et alii, 1990). MATIELLO h MANSK apresentaram a primeira referência ao triadimefon controle à ferrugem via sistema radicular em cafeeiros. Os avaliações resultados obtidos através de periódicas da porcentagem de lesões abortadas e livres de uredosporos revelaram a atuação do triadimefon aplicado via sistema radicular inibindo desenvolvimento das lesões *e* destruindo parcialmente uredosporos produzidos nas lesões adultas. Ao compararem amostragens, notaram maior efetividade aos 60 dias após aplicação, refletindo o maior período necessário para absorção do fungicida. HASHIZUME & MATIELLO (1980), tendo translocação utilizado diferentes métodos de aplicação para o controle da concluiram que os tratamentos ferrugem, com aplicação de triadimefon PM 25% no solo eem corte no tronco, estatisticamente semelhantes à pulverização, com ligeira superioridade para a aplicação no solo. O bom comportamento da aplicação do fungicida via solo pode ser explicado pela boa absorção pelas raizes e a sua translocação eficiente como

fungicida sistêmico total, embora seja necessário pela perda e inativação no solo. MIGUEL **MATIELLO** dobrada, (1981) concluíram que o triadimefon PM 25% em duas aplicações no solo (janeiro e fevereiro ou janeiro e março), exerceu controle satisfatório da ferrugem, principalmente nas doses elevadas (2 ou 3 g.p.c./cova), entretanto na dose mais baixa (1 g.p.c./cova), o foi ligeiramente inferior ao triadimefon aplicado via foliar. MATIELLO et alii (1985), com o objetivo de verificar efeito residual na controle da ferrugem, concluiram que ocorre uma melhoria da eficiencia de controle à ferrugem do cafeeiro tratamento com de triadimefon PM 25% via solo. Na primeira aplicação, a eficiência do produto não chega a ser satisfatória no primeiro ano, principalmente se a sarga pendente for alta; mas partir do segundo ano de aplicação, independente da carga das condições climáticas favoráveis à doença, o controle da destaca pela baixo nivel ferrugem de infecção, se e, principalmente, pelo elevado enfolhamento. O maior necessário para a absorção pelas raizes e para translocação do produto na planta explica a sua lenta ação no primeiro ano e efeito residual no solo constitui a principal causa da permanência do efeito por mais de um ciclo da doença. ZAMBOLIM et (1989), analisando por dois anos a persistência de triadimenol em plantas de cafeeiro e solo, visando o controle da ferrugem, constataram que triadimenol G 40 g.p.c./pl proporcionou excelente controle da doença (urna ou duas aplicações, no inicio e

durante o período das águas). Resíduos de triadimenol com fungicida foram encontrados tanto no solo quanto em folhas novas cafeeiro por 12 meses após a aplicação, demonstrando persistência do produto. SANTINI (1989) utilizando triadimenol 3%;6% e triadimefon PM 25%, constatou um de 85% para a ferrugem do cafeeiro acima todas as SOUZA (1991)concentrações utilizadas. também constatou um eficiente controle da ferrugem, ao ter tratado mudas de cafeeiro com triadimenol, nas doses de 0,06; 0,12; 0,18 g. de i.a./vaso (1,5 litros de solo); aos 15 dias antes da inoculação com uredosporos de Remileia vastatrix.

O controle da ferrugem do cafeeiro com aplicação de misturas de fungicidas + inseticidas sistêmicos via solo está se tornando uma prática de uso crescente. A mistura possibilita não somente o controle da ferrugem e outras doenças, mas também de importantes pragas como c bicho mineiro (Perileucoptera coffeella) que ocorre de forma generalizada e pode causar prejuízos superiores a 50% na produção, como consequência do intenso desfolhamento das plantas D'ANTONIO, 1989; RESENDE, 1989; D'ANTONIO (GUERRA NETO & MATIELLO, 1990; DI PIETRO & OLIVEIRA JR, 1990 e FIGUEIREDO alii, 1991). Até recentemente, poucos foram os trabalhos de pesquisa realizados com o objetivo de verificar a ação fungicida inseticidas. Entretanto, segundo MATIELLO et alii atualmente as pesquisas estão sendo intensificadas para verificar o efeito de inseticidas sobre o desenvolvimento da ferrugem,

como o estado vegetativo e a produtividade da cultura cafeeira.

ALMEIDA & MATIELLO (1990b) constataram um efeito positivo da presença do inseticida dissulfoton, quando en mistura triadomenol G 1% reduzindo a infecção e melhorando a ação fungicida, com maiores efeitos nos tratamentos com doses do triadimenol, e com minimas diferenças nas altas Resultados semelhantes foram constatados por D'ANTONIO (1990) ALMEIDA & MATIELLO (1991), quando utilizaram misturas dissulfoton + triadimenol. Segundo ZAMBOLIM (1989), o dissulfoton não atua isoladamente sobre à ferrugem, mas apresenta efeito aditivo ao triadimenol. MANSK h MATIELLO (1990) confirmaram efeito da mistura triadimenol + dissulfoton sobre o controle ferrugem e do bicho mineiro, além de maior retenção Utilizando-se de diferentes métodos de aplicação, afirmaram ter havido destaque para a aplicação de triadimenol + dissulfoton solo, que produziu em tres safras úteis, 100% mais testemunha.

De acordo com LORDELLO et alii (1978); UEHARA & BETTIOL (1989a, 1989b), o inseticida sistêmico aldicarb, muito utilizado na agricultura brasileira pela sua alta eficiência no controle de pragas, tem demonstrado um efeito inibidor sobre a germinação "in vitro" de uredosporos, e no desenvolvimento da ferrugem do cafeeiro.

3. MATERIAL E MÉTODOS

3.1. Formação das mudas de cafeeiro

Mudas de cafeeiro da cultivar Catuaí, linhagem CH 2077-2-5suscetivel ã Hemileia vastatrix, foram formadas en casa vegetação no Departamento de Fitossanidade na Escola Superior Agricultura de Lavras. Pasa isto, as sementes foram distribuidas e mantidas em caixas plásticas (40 cm de comprimento por 20 cm de largura e 13 cm de altura) contendo papéis de filtro previamente umedecidos até o surgimento da radícula (fase de esporinha), $oldsymbol{e}$ em seguida repicadas para substratos acondicionados em sacos de polietileno (18 cm de altura por 7 cm de diâmetro). Através recomendações de CARVALHO (1978), utilizou-se devidamente esterilizado com brometo de metila, constituido de terra de subsolo proveniente de um Latossolo Roxo, sendo que pasa 1000 litros de terra foram adicionados cada 300 litros de esterco de curral curtido e peneirado, \$ kg de superfosfato

simples e 0,5 kg de cloreto de potássio. As mudas receberam regas diárias e foram mantidas sob telado de sombrite com luminosidade de aproximadamente 50% até o aparecimento do 4º ou 5º par de folhas, quando então foram transplantadas para recipientes plásticos com 12 cm de altura pos 9 cm de diâmetro. O preparo substrato utilizado para o enchimento destes recipientes semelhante ao utilizado para a formação das mudas, com exceção da sua composição que passou a ter 25% de areia, 25% de esterco curral e 50% de terra. Uma amostra foi submetida a uma análise de fertilidade do solo pelo Laboratório de Química do Departamento de Ciência do Solo da ESAL, cujos resultados são apresentados no Quadro 1. Após o término do transplantio, as mudas foram mantidas em Casa de vegetação sob as mesmas condições utilizadas para a formação das mudas, e com surgimento do 79 par de folhas, mudas foram transferidas para uma câmara de crescimento vegetativo.

QUADRO 1. Grau de acidez e teores de alguns componentes químicos no substrato utilizado para o desenvolvimento das mudas de cafeeiro, ESAL, Lavras-MG, 1992.

рН	P	K	Ca ⁺⁺	Mg ++	Al
H ₂ C	# A	pm			C
5,7	72	272	4,4	1,1	0,1

3.2. Coleta e armazenamento de uredosporos de <u>Hemileia</u>
vastatrix

o objetivo de se ter no momento da inoculação uredosporos de Hemileia vastatrix isentos de impurezas, em quantidade suficiente e com satisfatório poder germinativo, efetuou-se a coleta no campo de folhas de cafeeiros infectadas. Com auxilio de um bisturi, retirou-se os uredosporos contidos nas lesões, tendo-se o cuidado de evitar impurezas como fragmentos de tecido đе folha, teia de ácaros, massas de micélio do Verticillium hemileia e partículas hiperparasita de (1971), os uredosporos Conforme recomendações de ROMEIRO coletados foram acondicionados em cápsulas gelatinosas e estas dessecadores e mantidas em geladeira a 5°C. em armazenadas fundo dos dessecadores, colocou-se uma solução de acido sulfúrico 1,83, na concentração de 32,6% de densidade (V/V)proporcionou uma umidade relativa fixa no interior do dessecador em torno de 50%.

3.3. Efeito preventivo e curativo de triadimenol e aldicarb em diferentes épocas, em mistura e isoladamente, via solo, em plantas de cafeeiro inoculadas com <u>Hemileia vastatrix</u>

Os ensaios foram instalados junto ao Departamento de Fitassanidade da Escola Superior de Agricultura de Lavras (ESAL)

em câmara de crescimento vegetativo, no periodo de novembro/ dezembro de 1991.

O delineamento experimental inteiramente casualizado foi utilizado para a análise de lesões esporuladas, lesões totais, razão de esporulação e abscisão foliar, sendo cada ensaio composto de 43 tratamentos e 3 repetições. A parcela experimental constou de um vaso contendo uma planta com 8 pares de folhas.

Foram utilizados 2 produtos sistémicos via solo:

a) fungicida triadimenol: ß (4-clorofenoxi) - a -(1-1-dimetil-2, 4, triazole-1-etanol, (ANDREI, etil) 1,H, 1, b) inseticida aldicarb: 2 - metil-2-(metiltio) - propionaldeido -0-metilcarbamoil, (WORTHING, 1979). Os produtos foram aplicados em três épocas: aos 25, 15 e 5 dias antes e após a inoculação das plantas. O triadimenol 6 G nas doses do principio ativo de 0,3; 0,6; 6,0 e 21,0 mg/vaso (0,75 litros de .solo); aldicarb 150 G $37.5 \quad e \quad 75.0 \quad \text{mg/vaso} \quad e \quad \text{a mistura das} \quad \text{respectivas} \quad \text{doses},$ aplicadas e misturados em toda a superfície de substrato do vaso uma profundidade de 1 cm. Após a aplicação dos produtos, realizou-se regas periódicas a cada 48 h com um volume de 20 ml/vaso. O volume de aqua foi pré-estabelecido através de testes com diferentes volumes com o objetivo de evitar a lixíviação dos produtos para fora dos vasos juntamente com a água.

Após o periodo de aplicação dos produtos, dois pares de folhas (6º e 7º par) de cada planta foram identificados através da numeração das folhas com etiquetas auto colantes. Em seguida,

procedeu-se a inoculação na face inferior destas folhas com auxilio de um atomizador tipo "De Vilbiss" nº 15, utilizando uma suspensão de uredosporos de Hemileia vastatrix na concentração de 0,5 mg de uredosporos/ml de água destilada, com indice médio de germinação de 26%. A atomização da suspensão foi efetuada até a saturação sem contudo haver escorrimento, gastando em média 0,7 ml de suspensão/planta.

3.4. Descrição dos parâmetros de avaliação

As avaliações dos ensaios preventivo e curativo foram realizadas aos 3θ , 50, 70 e 90 dias após a inoculação. Os resultados de cada tratamento dentro dos parâmetros avaliados foram transformados de acordo com as informações de BANZATO & KRONKA (1989) em $\sqrt{x+0.5}$ pasa a realização da análise estatística.

Número total de lesões e número de lesões esporuladas

Demarcações de 4 cm na face inferior das folhas etiquetadas foram realizadas objetivando a avaliação da severidade expressa pelo número total de lesões (NTL), número de lesões esporuladas (NLE) e pela relação. As demarcações foram feitas na região central das folhas com caneta esferográfica, 4 dias após a

inoculação, evitando com *isto* a tendencia natural de se cometer erros sistemáticos na demarcação de áreas com ou sem lesões.

3.4.2. Razão de esporulação

A razão de esporulação (RE) foi determinada com base na relação entre o número de lesões esporuladas (NLE) e o número total de lesões (NTL), RE = NLE/NTL. Essa relação, segundo ABREU (1988), possibilita encontrar valores de RE de 0 a 1 que permite inferir maiores ou menores graus de controle da ferrugem e também proceder a um estudo estatístico dos dados.

3.4.3. Abscisão foliar

R avaliação da abscisão foliar constou da contagem de folhas etiquetadas e caídas com posterior transformação dos resultados em $\sqrt{x+0.5}$.

4. RESULTADOS E DISCUSSÃO

4.1. Número total de lesões e número de lesões esporuladas

ensaios preventivo e curativo {tabelas 1 6). verifica-se pelos resultados do número total de lesões, não havido diferenças significativas entre os tratamentos químicos $\it e$ testemunha nas tres épocas de aplicação dos produtos de ensaio. Esta semelhança de resultados pelo NTL entre os tratamentos é decorrente da união de lesões proporcionada pela aumento em tamanho, até a fase de esporulação, por *tratamentos não interferiram no desenvolvimento das lesões, o que proporcionou a cada avaliação indices baixos do NTL, semelhantes tratamentos que apresentaram controle da ferrugem. Deve levado também em consideração as doses dos produtos utilizados, pois em doses maiores poderia haver diferenças mais acentuadas entre os tratamentos pelo NTL, em razão de um controle mais eficaz, tal como os resultados constatados por SOUZA

que ao ter aplicado 0,06; 0,12 e 0,18 g/vaso [1,5 1 de solo] de triadimenol e 0,75 g/vaso de aldicarb, isolados e em mistura, aos 15 dias antes e após a inoculação, verificou uma diferença significativa entre aç tratamentos, com superioridade do NTL para a testemunha e o tratamento com aldicarb isolado nas duas épocas de aplicação dos produtos.

Para o número de lesões esporuladas NLE, verificou-se ensaio preventivo (Tabelas 1, 2 e 3) o surgimento de LE a partir dos 50 dias após a inoculação, evoluindo ou mantendose constantes até aos 90 dias en tratamentos como a testemunha duas doses de aldicarb isolado que apresentaram entre si grande semelhança de valores de NLE. Entretanto, observou-se tendência na maior dose de aldicarb em apresentar menores indices de LE com o aumento do periodo de aplicação dos que demonstra certa interferência produtos. 0 desenvolvimento das lesões. Esta interferência de aldicarb encontro de resultados obtidos por UEHARA & BETTIOL 1989b) que observaram o efeito "in vitro" e "in vivo" de aldicarb sobre uredosporos de Hemileia vastatrix e no desenvolvimento ferrugem en condições de casa de vegetação. LORDELLO et (1978) também constataram uma interferência de aldicarb sobre desenvolvimento da ferrugem, pois ao terem tratado mudas cafeeiro com 0,2 g de aldicarb aos 7 dias antes e mesmo ' tempo da inoculação com Hemileia vastatrix, observaram um efeito protetor às plantas, diminuindo e mesmo evitando o

desenvolvimento do fungo.

Pela análise do efeito preventivo do triadimenol isolado em mistura com aldicarb, em se considerando o NLE nas Tabelas e 3, observa-se ter ocorrido diferenças significativas tratamentos químicos e testemunha somente aos 90 inoculação, o que é decorrente do aumento do NLE da testemunha da constância de baixos valores de NLE dos 50 aos 90 dias para os tratamentos químicos. O triadimenol isolado mostrou-se eficiente quando aplicado aos 5 e 15 dias antes da inoculação, porém somente nas duas maiores doses. Entretanto, ao ser aplicado antes da inoculação, manteve não somente а as duas maiores doses, mas aumentou a eficiência das menores. O ótimo desempenho apresentado pelo triadimenol ensaio preventivo confirma os resultados obtidos por (1991), que constatou eficiente controle da ferrugem do aplicar, via solo, 0,06; 0,12 e 0,18 g de triadimenol/vaso (1,5 1 de solo) aos 15 dias antes da inoculação. Verifica-se, duas menores doses de triadimenol através das isolado, melhoria da eficiência de controle com o aumente do período de aplicação, o que demonstra a viabilidade de doses reduzidas de triadimenol quando aplicado antecipadamente para o controle da ferrugem do cafeeiro. Esta melhoria de eficiência em do tempo foi também constatada com outro fungicida das triazóis (triadimefon) por MATIELLO et alii (1985), que observaram no segundo ano de aplicação via solo deste produto um

dos TABELA 1. Efeito preventivo do fungicida triadimenol e do inseticida aldicarb em plantas de cafeeiro inoculadas com Hemileia vastatrix, 5 dias após a aplicação compostos no solo. ESAL, Lavras-MG, 1992.

Tratamentos	30 días apo	días após inoculaçio	ulaçio	50 d.as	ajos inoculação	cula	ção		% dias ap	apos inoculação	ação	0 dias a	apos inoculação	lação
	NLE	NTI.	RE	NLE	NTL		RE	į	NLE	NTL	RE	NLE	NTL	RE
. 0,3 mg tr	0,00	e 69'0	0,00	0,00 a	6,17 a	ab (00,00	Q.	0,60 ab	10,26 ab	0,05 a	1,30 a	8,92 a	0,14 ab
. 0,6 mg tr	0000	B 69'0	0,0	0,00 a		ap	00,00	p	0,27 ab	8,74 ab		0,60 ab		0,06 ab
. 6,0 mg tr	0000	0,27 a	0,0	0,00 a	4,16 a	ab (00,00	p	9 00,0	1,69 b		0,00 b		00,00
Bu	00,00	0,00 a	0,00	0,00 a	1,88	9	00,00	q	00°C	2,87 ab		00°0	1,32 a	00,00
. 37,5 mg al	00,00	8 96 th	0,00	1,10 a	.0,55 a		0,05 a	ab	1,57 3	17,22 a	0,08 a	2,19 a	13,06 a	0,16 ab
mg	00,00	1,07 a	0,00	00°C	10,51 a	ab (0000	Д	0,27 ab	9,29 ab	0,03 a	1,30 a	7,64 a	0,17 ab
. 0,3 mg tr +														
37,5 mg	00,00	0,87 a	0,00	1,60 a	7,95 a	ab (0,12 a	19	0,60 ab	8,50 ab	0,09 a	1,63 a	8,24 4	0,23 a
8. 0,6 mg tr +														
37,5 mg	00,00	0,87 a	0,0	9,00 a	12,67 a	ab (00,00	Q	00°C	5,01 ab	0,00 a	00,00 b	2,22 4	0,00 b
8m 0,8														
37,5 mg al	00,00	0,49 a	0,0	,000 a	D,17 a	ab (00,0	P	d. 00,0	7,66 ab	0,00 a	0°00 p	1,82	00,00
21,0 mg														
37,5 mg al		0,27 a	0,00	0,00 a	e 60°9	ab (00,00	Ф	00°0	4,21 ab	0,00 a	00°0	2,42 a	0000
11. 0,3 mg tr +														
75,0 mg al	00,00	0,69 a	0,00	0,00 a	4,87 a	ab (00,00	9	1,000 b	4,45 ab	00,00	0°00 P	0,87 8	00°0
12. 0,6 mg tr +						*								
75,0 mg al	00,00		0,0	E 00 40	D, 59 a	ab (0000	P	1,00 b	6,87 ab	0,00 a	00°0	5,59 8	00,00
13. 6,0 mg tr +														
75,0 mg al	00,00	0,49 a	0,0	E 00.5	5,57 a	ab (00,00	q	4,00 b	5,54 ab	0,00 a	00°0	2,78 2	00°C
14. 21,0 mg tr +														
75,0	00,0	0,27 a	0,00	C,000 a	2,47	9	00,00	q	00.0	2,52 ab	0,00 a	00°0	2,52 8	00°C
15. Testemunha	00.0	1 74 3	0.0	6.60 3		A. A.	n as	-40	02	15 90 AL	0000	1 63 0	11 63	0 11 ah

Médias seguidas da mésma letra em cada coluna ao diferem entre si, pelo teste de Tukey ao nível de 5% de probabilidade. A analise estatistics foi feita com os vilores trunsformados em \(\next{x} + 0, \). * Médias de 3 repetições (valores originais)

TABELA 2. Efeito preventivo do fungicida triadimenol e do inseticida aldicarb em plantas de cafeeiro inoculadas com Hemileia vastatrix, 15 dias após compostos no solo. ESAL, Lavras-MG, 1992. a aplicação dos

Tratamentos	. 30 dias	após	inoculação	50	dias	apos inoc	inoculação	70 dias	após	inoculação	90 di	90 días após inoculação	culação
	NLE	NTL	RE	NLE		NIL	RE	NLE	NIL	RE	NLE	TIN	RE
	0,00	1,24 a	0,00	0,00	o .	7,95 ab	0,00 a	0.60 ab	10.56 a	0.05 a	0 60 0	- 1	- 1
2. 0,6 mg tr	0,00	1,92 a	0,00	0,00	Б				6.21 a	0.00 a	0 27 60	10,74 au	
	0,00	0,27 a	0,00	0,00	C.	10,71 ab			7.78 4	0 00 2	0 00		
	0,00	0,00 a	0,00	0,00	6	7, 39 ab				0.00 a	0,00		
37,5 mg	0,00	10,08 a	0,00	1,82	ш	22,71 a				0.10 a	1.82 a	14.43 9	
6. 75,0 mg al 7. 0,3 mg tr+	0,00	1,58 a	0,00	0,00	0	5,56 ab	0,00 a	0,27 ab	5,79 a	0,02 a	0,60 abc		ab 0,18 a
37,5 mg	0,00	0,00 a	0,00	0,00	0	11,12 ab	0,00 a	0,00 ь	7,57 a	0.00 a	0.00	c 4.49 ah	0 00
37,5 mg al	0.00	1.66 a	000	0 27	7	7 72 -1							
Bu			3		-		0,04 0	0,2/ au	2,0/ a	0,06 a	0,27 b	bc 3,56 a	ab 0,06 a
37,5 mg al	0 00	₽,20 ×	o 0	0 0 3	ъ	Z,52 U	0 00 a	0 CC b	5 15 a	0,000 a	0 30	c Z, 2Z &	a0 0 00 E
37,5 mg	0,00	0 NOO a	0 0 0	0 3	Б	ll,zo eC	0 00 a	0 00 c	P 05 a	0 0 1	0		
11. 0,3 mg tr +									S	2		n 1,24 a0	0 0 0 a
75,0 mg al 12. 0,6 mg tr +	0,00	0,49 a	0,00	0,69 ab	0	8,59 ab	0,08 a	0,88 ab	7,72 a	0,12 a	0,88 abc	c 5,50 ab	ab 0,11 a
75,0	0,00	0,88 a	0,00	0,00	0	7,22 ab	0,00 a	0.00 b	4.15 a	0 00 a			0
13. 6,0 mg tr +									2000	0,000 0	0,00 0	0,21 0	b 0,00 a
75,0 mg al	0,00	0,27 a	0,00	0,00	Ь	8,60 ab	0,00 a	0,00 b	8,98 a	0,00 a	0,00 c	4,03 ab	b 0.00 a
75,0 mg	0,00	0,49 a	0,00	0,00 b		5.92 ab	0.00 a	0 00 6	. 27	000	2		
15 Tactaminha	000	774 9	000	0,60 ab		19 66 -1	0.05 a	1 30 24	15 30	000		no refer	0,000 a

^{*} Médias de 3 repetições (valores originais).

Médias seguidas da mesma letra em cada coluna não diferem entre si, pelo teste de Tukey ao nível de 5% de probabilidade. A análise estatística foi feita com os valores transformados em $\sqrt{x} + 0.5$.

TABELA 3. Efeito preventivo do fungicida triadimenol e do inseticida aldicarb em plantas de cafeeiro inoculadas com Hemileia vastatrix, 25 dias após a aplicação dos compostos no solo. ESAL, Lavras-MG, 1992.

B-4444														
		5.		Av	alí	ação do NL	E, NTL c RE	ет 4 cm2	de area fo	liar *				
Tratamentos	30 dia	s após Ino	culação	50	dia	s após ino	culação	70 dia:	s apos inoc	ılação		90 dias a	ipós Ínocul	ação
	NLE	STL	RE	NLE		NTL	RE	NLE	NTI.	RE		NLE	NTL	RE
1. 0,3 mg tr	0,00	2,10 ab	0,00	0,00	b	7,10 a	0,00 ь	0,00 ь	8,87 a	0,00	b	0,27 bc	6,81 ab	0,02 a
2. 0,6 mg tr	0,00	0,27 в	0,00	0,00	b	13,82 a	0,00 в	0,00 h	9,24 a	0,00	b	0,00 c	6,35 ab	0,00 a
3. 6,0 mg tr	0,00	1,10 ab	0,00	0,00	b	14,26 a	0,00 в	0,00 h	7 30 a	0,00	b	0,00 c	4,96 ab	0,00 a
4. 21,0 mg tr	0,00	2,11 ab	u,00	0,00	b	5,75 a	0,00 h	0,00 ab	3,75 a	0,00	h	0,00 c	1,53 ь	0,00 a
5. 37,5 mg al	0,00	14,63 a	0,00	3,50	a	24,35 a	0,16 a	5,01 a	17,24 a	0,30	a	2,24 R	12,07 h	0,19 a
6.75,0 mg a1	0,00	0,00 ь	0,00	0,27	b	10,82 a	0,02 h	0,27 b	10,56 a	0,02	b	0,27 bc	8,24 ь	0,03 a
7. 0,3 mg tr +							ŕ	ŕ	-	,		•		,
37,5 mg al	0,00	5,45 ah	0,00	0,00	b	16,42 a	0,00 в	0,00 b	17,85 a	0,00	ъ	0,00 c	19,02 a	0,00 a
8. 0,6 mg tr +			•				•	-	•	,		,	,	<i>'</i>
37,5 mg al	0,00	0,87 ь	0,00	0,00	b	10,02 a	0,00 b	0,00 в	8,45 a	0,00	b	0,00 c	5,88 ab	0,00 a
6,0 mg tr +	•		•	•		,	1	,	,	•		•	,	,
9. 37,5 mg al	0, 00	3,79 ab	0,00	0,00	b	. 5,58 a	0,00 b	0,00 h	4,23 a	0,00	ь	0,00 c	4,32 ab	0,00 a
10. 21,0 mg tr +		_	-	ŕ			•	•	ŕ	,		,	•	, , ,
37,5 mg al	0,00	0,00 ь	0,00	0,00	b	7,52 a	0,00 ь	0,00 ь	2,71 a	0,00	b	0,00 c	6,13 ab	0,00 a
11. 0,3 mg tr +	,	-	,	•		•	,	,	,	.,		,	,	.,
75,0 mg al	0,00	2,06 ab	0,00	0,00	ь	10,49 a	0,00 b	0,00 h	6,21 a	0,00	b	0,00 c	5,19 ab	0,00 a
12. 0,6 mg tr +	ŕ	-	,	•		,		,	•	,		,	,	, ,
75,0 mg al	0,00	3,56 ab	0,00	0,00	b	13,34 a	0,00 b	0,00 b	7,54 a	0,00	b	0,00 c	7,27 ab	0,00 a
13. 6,0 mg tr +	,	, ,	,	,		,	-,	-,	.,	-,	Ü	-,	.,	0,00 L
75,0 mg a1	0,00	1,66 ab	0,00	0,00	b	14,92 a	0,00 h	0,00 ь	4,65 a	0,00	b	0,00 c	7,12 ab	0,00 a
14. 21,0 mg al	, ,	,	,	• • •			,	,	,,,,,	-,	-	.,	.,	.,
75,0 mg a1	0,00	0,27 b	0.00	0,00	b	9,06 a	0,00 ь	0,00 ь	4,09 a	0,00	h	0,00 c	6,82 ab	0,00 a
15. Testemunha	0,00	1,74 ab	0,00	0,60		12,66 a	0,05 ad	1,30 b	15,28 a	0,09		1,63 ab	11,53 ab	0,14 a
	-,	· · · · · · · · · · · · · · · · · · ·	- ,	.,	~	,	-,	_, _ D	200 9 200 02	5,07		1,05 00	~= 5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	٠, ٠. ۵

^{*} Médias de 3 repetições (valores originais).

Medias seguidas da mesma letra om cada coluna não diferem entre si, pelo teste de Tukey ao nível de 5% de probabilidade. A anallas estatística foi feita com os valores transformados em $\sqrt{x+0.5}$.

de eficiencia no controle da ferrugem do cafeeiro, concluiram que o maior periodo necessário para a absorção pelas raizes e para a translocação do produto na planta explica a no primeiro ano e o seu efeito residual ação constitui a principal causa da permanência do efeito por mais ciclo da doença, Os tratamentos com a mistura triadimenol + aldicarb apresentaram, nas três épocas de aplicação resultados de controle com indices de produtos, LE bem semelhantes aos tratamentos com triadimenol isolado. Entretanto, observa-se na Tabela 1, um efeito sinérgico no tratamento com a dose de triadimenol em mistura com a major 90 dias após a inoculação. O efeito sinérgico aldicarb, aos ocorrido demonstrou a viabilidade do uso de doses mais econômicas de triadimenol em mistura com aldicarb para o controle ferrugem. Tal fato foi também constatado com outro inseticida (dissulfoton) por BORDIN et alii (1989); ALMEIDA MATIELLO (1990b); D'ANTONIO (1990); MANSK & MATIELLO (1990); ALMEIDA MATIELLO (1991) e MANSK & MATIELLO (1991) que, ao aplicarem solo a mistura de dissulfoton+ triadimenol, observaram não efeito aditivo mas também um efeito sinergico somente um triadimenol, o que possibilitou um eficiente controle da ferrugem através de doses mais econômicas do fungicida.

No ensaio curativo, observa-se pelo NLE, na5 Tabelas 4, 5 e 6, que os tratamentos com as duas doses de aldicarb isolado não apresentaram qualquer efeito sobre o desenvolvimento da ferrugem.

TABELA 4. Efeito curativo do fungicida triadimenol e do inseticida aldicarb em compostos no solo. ESAL, Lavras-MG, 1992. de cafeeiro inoculadas com Hemileia vastatrix, 5 dias antes da aplicação dos plantas

					Avalinção lo	to NLE, NE,	e RE	em 4 cm ²	de	ārea	follur *			
Tratmentos	30 dias		apos inculação	laçio	to dies a	apos inoculação	a/a0	70 dias	S	após troculição	oculıção	90 das pos inoci		ação
	NLE		AIL	H	MLE	JEN	RE	NLE	1	J.C.N	RE	N	TEN	8
1, 0,3 mg t	0,00	٥	18,18	000 a	0,00 b	10,23 a	0,00 a	0,27	0	6,37 a	0.05	11E ab	3,89 a	0,1 ab
Bm	0,00	5	16,80 .	000 a	0,00 ь		0,00 a	0,00	b	7,58 a	0 <u>0</u> 0	₽60 ab	5,59 a	
8m	0,00	6	13,03	000 a	0,00 b		0,00 a	0,00	ь	6,19 a	0000	000	3,80 a	0,00 6
gm 0,	0,00	0	4,53 a	0000 a	0,00 6		0,00 a	0,00	ь	0,88 a	0,00 b	0 0 b	1,07 a	
Sm	0,27	5	9,64 2	001 a	0,41 ab		0,13 a	0,87	b	4,65 a	0,20 ab	1,30 ab	3,65 a	
6. "5,0 mg al		24	20,13 a	020 a		_	0,27 a	9,42	20	14,85 a	0,67a	7,02 a	9,03 a	0,87 a
17,5 mg al	0,00	ь	7,48 =	000 a	0,4" ab	5,46a	0,12 a	0,69	ь	2,44 8	0,17 ab	C, 69 ab	3,61 a	0,7 ab
8. 0,6 mg tr +														
7,5 mg al	0,00	0	10,19 &	000 a	0,6' ab	10,90 a	0,12 a	0,00	ď	7,52 a	0,00 b	C, 27 ab	7,06 a	0,02 b
5,0 mg tr														
9. 7,5 mg al	0,00	0	3,56 &	0 ро а	0,00.6	3,38 a	0,00 a	0,00	ь	3,23 a	0,00 ь	0,00 ь	2,87 a	0,00 ь
10. 1,0 mg tr +														
.7,5 mg	0,00	0	6,378	000 a	0,00 6	11,37 a	0,00 a	0,00	ь	10,25 a	0,00 b	0,00 ь	7,12 a	0,00 6
1. 0,3 mg tr	0 07	7	10 30	0.18	3 00 1	13 8/2	0 33	7 30	2	13 16 2	2 13 1	2 7 7 7 7	10.02 2	0 6 47
- Se														
	0,88	0	13,56 a	0,04 a	3,08 ab	8,18 a	0,21 a	2,06	ab	9,17a	0,11 ib	L, 24 ab	1,73 a	0,2' ab
13. 6,0 mg tr														
	0,00	b	10,29 =	0,00 a	0,00 b	10,82 a	0,00 a	0,00	0	12,06 a	0,00 ь	5,00 ь	11,63 a	0,01 b
14. 2,0 mg al														
5,0 mg al	0,00	0	6,93 a	0,10 a	0,00 b	8,50a	0,00 a	0,00	0	6,04a	0,00 b	J.00 b	5,88 a	0,01 6
15. Estemunha	0.00	Ţ	19 19 5	0 10 9	70 27	15 97			-	4 87 5	1 30 5	0 05 05	2 56 6	0 00

^{*} Melas de 3 repitições (valores originis).

A analise estatistica foi feita com as vaores transformaces em Vx+0,5. Media seguida: da mesma letra em cala couna nac difirem entre d, elo teste de Tukey ao nivel le 5% le prilabilidade.

TABELA 5. Efeito curativo do fungicida triadimenol e do inseticida aldicarb em plantas de cafeeiro inoculadas com Hemileia vastatrix, 15 dias antes da aplicação dos compostos no solo. ESAL, Lavras-MG, 1992.

				Avaliaçã	o do NLE,	NTL e RE e	em 4 cm d	a área fol	iar *			***************************************
Tratamentos	30 dias	apos Inoc	ulação	50 dias	após inocu	lação	70 dias	após inoci	ulação	90 dia	s após Ind	oculação
	NLE	NTI.	RE	NLE	NTL	RE	NLE	NTL	#E	NLE	NTL	RE
1. 0,3 mg tr	0,27 R	10,56 a	0,02 a	0,49 a	9,04 a	0,03 а	2,29 a	8,53 a	0,28 a	2,89 a	8,84 a	0,32 a
2. 0,6 mg tr	0,27 a	11,70 a	0,01 a	1,07 a	9,89 a	0,07 a	3,08 a	11,02 a	0,21 R	2,89 a	9,22 a	0,19 a
3. 6,0 mg tr	0,00 a	10,05	0,00 a	$0,00 \ a$	9,85 a	0,00 a	0,00 a	8,34 a	0,00 a	0,00 a	5,61 a	0,00 a
4. 21,0 mg tr	0,00 a	8,02 a	0,00 a	0,00 a	4,87 a	$0,00 \ a$	0,00 a	4,96 a	$0,00 \ a$	0,00 a	4,25 R	0,00 a
5. 37,5 mg al	0,27 a	8,25 a	0, 02 a	1,10 a	10,54 a	0,03 a	1,32 a	9,59 a	0,14 a	2,68 a	7,12 a	0,36 a
6. 75,0 mg al	0,27 a	14,30 н	0,01 a	1,41 a	10,35 a	0,13 a	1,92 a	9,96 a	0,10 a	1,00 a	4,28 a	0,24 a
7. 0,3 mg tr +	•											
37,5 mg al	0,00 a	8,77 a	0,00 a	0,00 a	2,78 a	0,00 a	0,00 a	7,92 a	0,00 a	0,00 a	2,94 a	0,00 a
8. 0,6 mg tr +	•	-		_		·						
37,5 mg al	0,49 a	5.59 a	0,08 a	0,88 a	4,74 a	0,16 a	0,27 a	4,91 a	0,10 a	0,87 a	3,50 a	0,21 a
9. 6,0 mg tr +	,		•	,								
37,5 mg al	0,00 a	11,51 a	0,00 a	0,00 a	5,79 a	0,00 a	0,00 a	3,89 a	0,00 a	0,00 a	3,22 a	0 ,00 a
10, 21,0 mg tr +	,		<u> </u>	ŕ	,	•		-	-	-		
37,5 mg al	0.00 a	5,97 a	0,00 a	0,00 a	9,59 a	0,00 a	0,27 a	11,62 a	0,03 a	0,00 a	6,86 a	0,00 a
11, 0,3 mg tr +	,	,	.,	,	,	,		•	•		ŕ	
75,0 mg al	0,87 a	7,50 a	1,13 a	0,88 a	4,15 a	0,22 a	1,07 a	9,58 a	$0,08 \ a$	1,73 a	7,75 a	0,26 a
12. 0,6 mg tr +	,	,	,	,	,	,		-	•	•	•	
75,0 mg at	0.00 a	8,50 a	0,00 a	$0,27 \ a$	3,45 a	0,02 a	0,27 a	6,44 a	0,03 a	0,49 a	4,73 a	0,06 a
13. 6,0 mg tr +	.,	.,	., -	- ,	-, -	,		•	,	,	•	•
75,0 mg al	0.00 a	10,94 a	0,00 a	0,49 a	4,80 a	0,19 R	0,49 a	8,17 a	0,04 a	0,49 a	5,48 a	0,05 a
14. 21.0 mg al	· • • • • • • • • • • • • • • • • • • •		,, 	v,	.,	- ,-		,	, -	J	,	•
75,0 mg al	0.00 a	2,89 a	0,00 a	0,00 a	2.87 a	0,00 A	0,00 a	2,47 a	$0,00 \ a$	0,00 a	1,32 a	0,00 a
•	•	19,19 a	0,00 a	0,00 a	15,92 a	0,00 R	1,63 a	4,87 a	0,39 з	2,05 a	3,56 a	0,56 a
15. Testemunha	0,00 a	17,17 a	0,00 a	O,ZI a	10,00 a	0,01 K	1,00 0	~ ,∪, a	0,07 3	2,00 a	3,50 a	-, u

^{*} Médias de 3 repetições (valores originais).

Médias seguidas da mesma letra em cada coluna não diferem entre si, pelo teste de Tukey ao nível de 5% de probabilidade.

A análise estatistica foi feita com os valores transformados em $\sqrt{x} + 0.5$.

TABELA 6. Efeito curativo do fungicida triadimenol e do inseticida aldicarb em plantas de cafeeiro inoculadas com Hemileia vastatrix, 25 dias antes da aplicação dos compostos no solo. ESAL, Lavras-MG, 1992.

	********					2		<u></u>		•••	
			Avaliaçã	o do NLE,	NTL c RE e	em 4 cm d	e área fol	iar*			
30 dias	após inoc	ulação	50 dias	após Inocu	lação	70 dias	após inoc	ulação	90 dia:	s após ino	culação
NLE	NTL	RE	NLE	NTL	RE	NLE	NTI,	RE	NLE	NTL	RE
0,00 а	8,97 a	0,00 a	l,32 a	7,85 a	0,21 a	3,29 a	8,41 a	0,37 a	3,29 R	7,42 a	0,41 a
$0,00 \ a$	$14,30 \ a$	0,00 a	0,69 a	6,08 a	0,08 a	1,92 a	8,37 a	0,27 a	1,73 a	5,92 a	0,50 a
0,00 a	7,68 a	0,00 a	0,27 a	4,29 a	0,01 з	0,00 a	10,25 a	0,00 a	0,27 a	4,45 a	0,01 a
0,60 a	4,70 a	0,19 a	0,49 a	4,80 a	0,07 a	0,49 a	6,36 R	0,05 a	0,49 a	4,09 a	0,06 a
0,27 a	12,26 a	0,02 a	$1,10 \ a$	8,69 a	0,15 a	2,24 a	6,93 a	0,32 R	1,42 a	5,19 a	0,27 a
0,49 R	9,43 a	0,03 a	1,10 a	8,03 a	0,08 a	2,10 a	4,52 a	0,27 a	3,84 a	6,06 a	0,37 a
0,49 a	5,97 a	0,10 a	1,16 a	4,45 a	0,21 a	1,42 a	6,61 a	0,19 a	1,95 a	2,42 a	$0,50 \ a$
0,27 a	3,45 a	0,06 a	0,49 a	3,96 a	0,14 a	1,42 a	5,89 a	0,27 a	1,42 a	4,00 a	0,38 a
					·			-			-
0,49 a	.7,32 a	0,07 a	2,42 a-	4,73 a	0,30 a	1,69 R	6,67 a	0,21 a	2,98 a	$3,49 \ a$	0,52 a
		-		-	•	-	-	•	•	•	•
0,00 a	7,87 a	0,00 a	0,88 a	5,10 a	0,10 a	0,00 a	3,96 a	0,00 a	$0,00 \ a$	1,16 a	0,00 a
		·			•		·	·	-		•
0,49 a	6,10 a	0,05 a	$0,88 \ a$	2,82 a	0,10 a	1,41 a	5,72 a	0,19 a	1,07 a	3,05 a	0,16 a
		Í			•	ŕ	ř	,	ŕ	Í	,
0,00 a	3,13 a	0,00 a	0,00 a	2,24 a	0,00 a	0,87 a	3,12 a	0.33 a	0.87 a	2,78 a	0,23 a
		•			,	,	,	,	,	,	,
$0,49 \ a$	8,54 a	0,06 a	$1,30 \ a$	9,22 a	0.14 a	1.73 a	9,25 a	0.21 a	1.32 a	10.04 a	0,16 a
-	*	•	•	•	,	•	, –		,		y -
0,00 a	4,72 a	0,00 a	0,00 a	4,43 a	0,00 a	0,00 a	2,85 a	0.00 a	0.00 a	2.42 a	0,00 a
0,00 a	19,19 a	0,00 a	0,27 a	-	•		-	•	-	-	0,56 a
	NLE 0,00 a 0,00 a 0,00 a 0,60 a 0,27 a 0,49 a 0,27 a 0,49 a 0,49 a 0,00 a 0,49 a 0,00 a 0,49 a	NLE NPL 0,00 a 8,97 a 0,00 a 14,30 a 0,00 a 7,68 a 0,60 a 4,70 a 0,27 a 12,26 a 0,49 a 9,43 a 0,49 a 5,97 a 0,27 a 3,45 a 0,49 a .7,32 a 0,00 a 7,87 a 0,49 a 6,10 a 0,00 a 3,13 a 0,49 a 8,54 a 0,00 a 4,72 a	0,00 a 8,97 a 0,00 a 0,00 a 14,30 a 0,00 a 0,00 a 7,68 a 0,00 a 0,60 a 4,70 a 0,19 a 0,27 a 12,26 a 0,02 a 0,49 a 9,43 a 0,03 a 0,49 a 5,97 a 0,10 a 0,27 a 3,45 a 0,06 a 0,49 a 7,32 a 0,07 a 0,00 a 7,87 a 0,00 a 0,49 a 6,10 a 0,05 a 0,00 a 3,13 a 0,00 a 0,49 a 8,54 a 0,06 a 0,49 a 8,54 a 0,06 a	30 dias após inoculação 50 dias NLE NIL RE NLE 0,00 a 8,97 a 0,00 a 1,32 a 0,00 a 14,30 a 0,00 a 0,69 a 0,00 a 7,68 a 0,00 a 0,27 a 0,60 a 4,70 a 0,19 a 0,49 a 0,27 a 12,26 a 0,02 a 1,10 a 0,49 a 9,43 a 0,03 a 1,10 a 0,49 a 5,97 a 0,10 a 1,16 a 0,27 a 3,45 a 0,06 a 0,49 a 0,49 a .7,32 a 0,07 a 2,42 a 0,00 a 7,87 a 0,00 a 0,88 a 0,49 a 6,10 a 0,05 a 0,88 a 0,49 a 6,10 a 0,05 a 0,88 a 0,49 a 8,54 a 0,06 a 1,30 a 0,49 a 8,54 a 0,06 a 1,30 a	30 dias após inoculação 50 dias após inoculação 50 dias após inoculação 50 dias após inoculação NLE NTL 0,00 a 8,97 a 0,00 a 1,32 a 7,85 a 0,00 a 14,30 a 0,00 a 0,69 a 6,08 a 0,00 a 7,68 a 0,00 a 0,27 a 4,29 a 0,60 a 4,70 a 0,19 a 0,49 a 4,80 a 0,27 a 12,26 a 0,02 a 1,10 a 8,69 a 0,49 a 9,43 a 0,03 a 1,10 a 8,03 a 0,49 a 5,97 a 0,10 a 1,16 a 4,45 a 0,27 a 3,45 a 0,06 a 0,49 a 3,96 a 0,49 a .7,32 a 0,06 a 0,49 a 3,96 a 0,49 a .7,32 a 0,07 a 2,42 a 4,73 a 0,00 a 7,87 a 0,00 a 0,88 a 5,10 a 0,49 a 6,10 a 0,05 a 0,88 a 2,82 a 0,00 a 3,13 a 0,00 a 0,00 a 2,24 a 0,49 a 8,54 a 0,06 a 1,30 a 9,22 a 0,00 a 4,72 a 0,00 a 0,00 a 4,43 a	NLE NTL RE NLE NTL RE 0,00 a 8,97 a 0,00 a 1,32 a 7,85 a 0,71 a 0,00 a 14,30 a 0,00 a 0,69 a 6,08 a 0,08 a 0,00 a 0,69 a 6,08 a 0,01 a 0,60 a 4,70 a 0,19 a 0,49 a 4,80 a 0,07 a 0,27 a 12,26 a 0,02 a 1,10 a 8,69 a 0,15 a 0,49 a 9,43 a 0,03 a 1,10 a 8,03 a 0,08 a 0,49 a 5,97 a 0,10 a 1,16 a 4,45 a 0,21 a 0,27 a 3,45 a 0,06 a 0,49 a 3,96 a 0,14 a 0,49 a 7,32 a 0,07 a 2,42 a 4,73 a 0,30 a 0,00 a 7,87 a 0,00 a 0,88 a 5,10 a 0,10 a 0,49 a 6,10 a 0,05 a 0,88 a 2,82 a 0,10 a 0,00 a 3,13 a 0,00 a 0,00 a 2,24 a 0,00 a 0,49 a 8,54 a 0,06 a 1,30 a 9,22 a 0,14 a 0,00 a 4,72 a 0,00 a 0,00 a 4,43 a 0,00 a	30 dias após inoculação 50 dias após inoculação 70 dias NLE NTL RE NLE NTL RE NLE NTL RE NLE 0,00 a 8,97 a 0,00 a 1,32 a 7,85 a 0,21 a 3,29 a 0,00 a 14,30 a 0,00 a 0,69 a 6,08 a 0,08 a 1,92 a 0,00 a 7,68 a 0,00 a 0,27 a 4,29 a 0,01 a 0,00 a 0,60 a 4,70 a 0,19 a 0,49 a 4,80 a 0,07 a 0,49 a 0,27 a 12,26 a 0,02 a 1,10 a 8,69 a 0,15 a 2,24 a 0,49 a 9,43 a 0,03 a 1,10 a 8,03 a 0,08 a 2,10 a 0,49 a 5,97 a 0,10 a 1,16 a 4,45 a 0,21 a 1,42 a 0,27 a 3,45 a 0,06 a 0,49 a 3,96 a 0,14 a 1,42 a 0,49 a .7,32 a 0,07 a 2,42 a 4,73 a 0,30 a 1,69 R 0,00 a 7,87 a 0,00 a 0,88 a 5,10 a 0,10 a 0,00 a 0,49 a 6,10 a 0,05 a 0,88 a 2,82 a 0,10 a 1,41 a 0,00 a 3,13 a 0,00 a 0,00 a 2,24 a 0,00 a 0,87 a 0,00 a 4,72 a 0,00 a 0,00 a 4,43 a 0,00 a 0,00 a 0,00 a	30 dias após inoculação 50 dias após inoculação 70 dias após inoculação NLE NTL RE NLE NTL RE NLE NTL RE NLE NTL. 0,00 a 8,97 a 0,00 a 1,32 a 7,85 a 0,21 a 3,29 a 8,41 a 0,00 a 14,30 a 0,00 a 0,69 a 6,08 a 0,08 a 1,92 a 8,37 a 0,00 a 7,68 a 0,00 a 0,27 a 4,29 a 0,01 a 0,00 a 10,25 a 0,60 a 4,70 a 0,19 a 0,49 a 4,80 a 0,07 a 0,49 a 6,36 R 0,27 a 12,26 a 0,02 a 1,10 a 8,69 a 0,15 a 2,24 a 6,93 a 0,49 R 9,43 a 0,03 a 1,10 a 8,03 a 0,08 a 2,10 a 4,52 a 0,49 a 5,97 a 0,10 a 1,16 a 4,45 a 0,21 a 1,42 a 6,61 a 0,27 a 3,45 a 0,06 a 0,49 a 3,96 a 0,14 a 1,42 a 5,89 a 0,49 a 7,32 a 0,07 a 2,42 a 4,73 a 0,30 a 1,69 R 6,67 a 0,00 a 7,87 a 0,00 a 0,88 a 5,10 a 0,10 a 0,00 a 3,96 a 0,49 a 6,10 a 0,05 a 0,88 a 2,82 a 0,10 a 1,41 a 5,72 a 0,00 a 3,13 a 0,00 a 0,00 a 2,24 a 0,00 a 0,87 a 3,12 a 0,49 a 8,54 a 0,06 a 1,30 a 9,22 a 0,14 a 1,73 a 9,25 a 0,00 a 4,72 a 0,00 a 0,00 a 4,43 a 0,00 a 0,00 a 2,85 a 0,00 a 4,72 a 0,00 a 0,00 a 4,43 a 0,00 a 0,00 a 2,85 a	NLE NTL RE 0,00 a 8,97 a 0,00 a 1,32 a 7,85 a 0,71 a 3,29 a 8,41 a 0,37 a 0,00 a 14,30 a 0,00 a 0,69 a 6,08 a 0,08 a 1,92 a 8,37 a 0,27 a 0,00 a 7,68 a 0,00 a 0,27 a 4,29 a 0,01 3 0,00 a 10,25 a 0,00 a 0,60 a 4,70 a 0,19 a 0,49 a 4,80 a 0,07 a 0,49 a 6,36 R 0,05 a 0,27 a 12,26 a 0,02 a 1,10 a 8,69 a 0,15 a 2,24 a 6,93 a 0,32 R 0,49 R 9,43 a 0,03 a 1,10 a 8,03 a 0,08 a 2,10 a 4,52 a 0,27 a 0,49 a 5,97 a 0,10 a 1,16 a 4,45 a 0,21 a 1,42 a 6,61 a 0,19 a 0,27 a 3,45 a 0,06 a 0,49 a 3,96 a 0,14 a 1,42 a 5,89 a 0,27 a 0,00 a 7,87 a 0,00 a 0,88 a 5,10 a 0,10 a 1,41 a 5,72 a 0,10 a 0,49 a 6,10 a 0,05 a 0,88 a 2,82 a 0,10 a 1,41 a 5,72 a 0,19 a 0,00 a 3,13 a 0,00 a 0,00 a 2,24 a 0,00 a 0,00 a 3,12 a 0,33 a 0,49 a 8,54 a 0,06 a 1,30 a 9,22 a 0,14 a 1,73 a 9,25 a 0,21 a 0,00 a 4,72 a 0,00 a 0,00 a 4,43 a 0,00 a 0,00 a 2,85 a 0,00 a	30 dias após inoculação 50 dias após inoculação 70 dias após inoculação 90 dias NLE NTL RE NLE NTL	30 dias após inoculação 50 dias após inoculação 70 dias após inoculação 90 dias após inoculação NLE NTL RE NLE NTL NTL RE NLE NTL NTL RE NLE NTL NTL NLE NTL NLE NTL NLE NTL NTL RE NLE NTL NTL NLE NLE NTL NLE NLE NTL NLE NTL NLE NLE NTL NLE NTL NLE NLE NTL NLE NLE NTL NLE NLE NTL NLE NLE NLE NTL NLE NLE NTL NLE NLE NLE NTL NLE NLE NLE NTL NLE NLE NLE NLE NTL NLE NLE NTL NLE NLE NLE NLE NLE NLE NLE NLE NLE NL

^{*} Médias de 3 repetições (valores originais).

Médias seguidas da mesma letra em cada coluna não diferem entre si, pelo teste de Tukey ao nível de 5% de probabilidade. A institua estatística foi feita com os valores transformados em $\sqrt{x} + 0.5$.

Entretanto, nas Tabelas 4 e 5, verifica-se que os tratamentos com as duas maiores doses de triadimenol, isolado e en mistura com menor e a maior dose de aldicarb, tenderam a apresentar uma maior eficiência de controle à ferrugem, impedindo o desenvolvimento de esporuladas. Na Tabela 6, observa-se ter ocorrido lesões incidência de lesões esporuladas em quase todos os tratamentos, porém, houve uma redução e um impedimento ao desenvolvimento lesões esporuladas para os tratamentos com a maior de triadimenol em mistura com a menor e a maior dose de aldicarb. respectivamente. Vale salientar que, durante o processo de avaliação do ensaia de efeito curativo, observou-se tratamentos que impediram o desenvolvimento de **LE** apresentaram diferentes graus de desenvolvimento da ferrugem, tendo-se lesões desenvolvidas com o aumento do período de aplicação mais des interferência no desenvolvimento da ferrugem produtos, A por tratamentos envolvendo triadimenol no ensaio curativo foi também observada por MANSK h MATIELLO (1990), que constataram um efeito curativo de triadimenol no desenvolvimento da ferrugem, quando este produto foi aplicado durante o período infectivo Resultados semelhantes foram obtidos com outro fungicida do grupo dos triazóis (triadimefon) por MANSK & MATIELLO (1981),constataram uma ação curativa no desenvolvimento da ferrugem, com redução e inativação das lesões já formadas. SOUZA (1991), ao ter aplicado 0.06; 0.12 e 0.18 g/vaso (1.5 l de solo) de triadimenol0,75 g de aldicarb, isolados e em mistura, aos 15 dias após a

aldicarb. Com relação aos tratamentos com aldicarb isolada, observa-se que os tratamentos com as duas doses isoladas proporcionaram aumentos da RE até aos 90 dias após a inoculação, aumento mais acentuado na menor dose, e este superioridade à testemunha quando da aplicação aos 25 dias antes da inoculação. Observa-se pelas Tabelas 4, 5 e 6 (aplicação produtos aos 5, 15 e 25 dias após a inoculação) que o aldicarb não interferiu no desenvolvimento da ferrugem, apresentando valores de RE iguais aos da testemunha. Verifica-se, na Tabela 4, tratamentos com as duas maiores doses de triadimenol em mistura com a menor e a maior dose de aldicarb interferiram no desenvolvimento do processo infeccioso, esse efeito tenha dimninuido com o aumento do periodo aplicação. Resultados semelhantes foram observados por SOUZA (1991) após o tratamento de mudas de cafeeiro com triadimenol e aldicarb, aos 15 dias após a inoculação com Hemileia vastatrix. Esse autor observou que o tratamento com aldicarb isolada proporcionou um valor de RE inferior a testemunha, o que não observado no presente trabalho. Tal discrepância é atribuida alta dose utilizada por aquele autor, ou seja, 0,75 g i.a./vaso.

4.3. Abscisão foliar

analisar os resultados do indice de abscisão foliar do ensaio preventivo (Tabela 7), verifica-se, num contexto geral, um de abscisão foliar com uma indice diferenca significativa entre os seus tratamentos nas tres épocas aplicação dos produtos, sendo o mesmo notado para o (Tabela 8). Resultados semelhantes foram também curativo constatados por SOUZA (1991), ao ter aplicado 0,06; 0,12 e 0,18 g/vaso (1,5 1 de solo) de triadimenol e 0,75 g de aldicarb, $oldsymbol{e}$ em mistura $oldsymbol{\mathsf{aos}}$ 15 dias antes da inoculação. ao ter aplicado os produtos aos 15 Entretanto, dias após a inoculação, verificou uma superioridade de abscisão foliar para todos os tratamentos em relação à testemunha, o que não observado no ensaio curativo (tabela 8) do presente trabalho.

incidência de abscisão foliar ocorrida nos baixa dois ensaios pode ser explicada por dois fatores: primeiramente, fato de apenas dais pares de folhas de cada planta terem sido inoculados com uredosporos de Hemileia vastatrix, que possibilitou às plantas uma menor perda de vigor causada pela ferrugem; em segundo lugar, por ter sido utilizado baixas de triadimenol e aldicarb nos tratamentos, o que proporcionou uma menor queda das folhas. Este fato foi constatado por D'ANTONIO (1990); D'ANTONIO et alii (1990) e MANSK & MATIELLO (1991), que investigarem o efeito da mistura triadimenol + dissulfoton ao

sobre à ferrugem, verificaram que estes produtos, em doses menores, mantiveram o enfolhamento dentro de níveis normais e aceitáveis, além de bons resultados de controle a esta enfermidade. A incidência de abscisão foliar, em razão da dose do produto utilizado, foi também investigada por LORDELLO et alii (19781, que ao terem tratado mudas de café com 0,2 e 0,4 g de aldicarb aos 7 dias antes, após e durante a inoculação, constataram a ocorrência de abscisão foliar somente para a maior dose e em todas as épocas de inoculação.

A analise estatistica foi feita com os valores transformados em $\sqrt{x+0}$,5.

* Medias de 3 repetições (valores originais).

Φ aldicarb, aos 5, 15, e 25 dias antes da inoculação. ESAL, Lavras-MG, 1992. solo com triadimenol 7. Abscisão foliar em mudas de cafeeiro tratadas via TABELA

		100000000000000000000000000000000000000	11.65.23.51	A STATE OF THE PARTY OF THE PAR		T. Acc.	Availação	o da abscisao follar*	(ao rollar				
Trai	Tratamentos	30 días após		Inoculação	50 diss	apos	noculação	70 dias	apos	inoculação	90 dias	apos	Inoculação
		5	15	25	50	1.5	25	2	1.5	25	\$	15	25
1:	0,3 mg tr	00,00	0,27	00,00	00*0	0,27	00,00	00,00	0,27	00,00	00,00	0,27	00,00
2.	0,6 mg tr	00,0	00.0	00,00	00,00	00,00	00,00	0000	0000	00'0	00.00	0000	0000
*	6,0 mg tr	00,0	0000	00,0	00,00	00'0	00,00	00,0	00,0	00,0	0000	0000	0000
4.	21,0 mg tr	00,00	00,00	00,00	00,00	0000	00,00	00,00	00,0	00,00	00*0	0,27	00,00
5	37,5 mg al	0000	0000	00,0	0000	00,0	00,00	0,27	0000	00,0	0,27	0000	64.0
9	75,0 mg al	00,00	0000	0000	00,00	67,0	00,00	0000	67,0	00,00	00,0	64.0	0000
+	0,3 mg tr +												
	37,5 mg al	00.0	00,00	00.00	0,27	00,00	00,00	67,0	0000	00,00	64,0	0000	00.00
8	0,6 mg tr +												
	37,5 mg al	000	0	0,00	00,00	0 0	00 0	00*0	0,00	00.00	6 0	000	000
6	6,0 mg tr +												
	37,5 mg al	0000	00,00	00,00	00.0	00,00	00,00	00,00	00,0	00*0	00,0	0000	00,00
90.	21,0 mg tr +												
	37,5 mg al	0,27	00,0	00,00	67.0	00,0	00,00	67,0	0,27	09*0	0,87	1,16	1,16
i.	0,3 mg tr +												
	75,0 mg al	00,0	00,00	00.00	00.00	00,00	00,00	00.00	00,00	0000	00,00	0000	00,00
ID.	0,6 mg tr +												
	75,0 mg al	X	00.00	00,00	00,0	00,00	0 27	00*0	00,00	0 27	r O	0	8
3.	6,0 mg tr -												
	75,0 mg al	0,00	00,0	00 0	00 0	00°P	00 0	00,00	00,0	00*0	& 0	0,00	0 27
17	21,0 mg tr -												
	75,0 mg al	00,0	00.00	00,00	0,27	00,0	00,00	1 6	00,0	0,27	1,16	64,0	00,00
13.	Testemunha	00.0	00.0	00.0	0.00	00.0	00.0	7	0.27	0 37	0 27	0.27	0.27

A analise estatistica foi feita com os valores transformados em $\sqrt{x+0.5}$.

Abscisão foliar em mudas de cafeeiro tratadas via solo com triadimenol aldicarb, aos 5, 15 e 25 dias após a inoculação. ESAL, Lavras-MG, 1992. 8 TABELA

Ä H	s yeae 14	30 dias apos		Inoculação	So dias	apos	Inoculação	70 dias apos		inoculação	90 dias	sode	Inoculação
į		. 5	15	25	5	1.5	25	5	15	25	2	1.5	25
1.	0,3 mg tr	00,00	0,27	00,00	00,00	00,00	00,00	00.00	0.00	0.00	00.0	00 0	000
2.	0,6 mg tr	00,00	00,00	00,00	00,00	00,00	00.00	00.00	00.00	0.00	00'0	0000	0,00
3,	6,0 mg tr	0000	0000	00,00	00,00	00,00	00,00	00.00	00.00	0.00	00.00	000	0000
4	21,0 mg tr	00,00	00,00	00,00	00,00	00,00	00,00	00.00	00.00		00'0	0000	0000
2.	37,5 mg al	0000	00,00	0000	00,00	00.00	0,27	00.00	0.00	0.87	0000	000	1 01
.9	75,0 mg al	00,00	00,00	00,00	00.00	00.0	00.00	0.00	00.00	67 0	0 27	0,00	1 10
7.	0,3 mg tr +								2060	2460	7750	10.0	7,10
	37,5 mg al	0000	00,00	00,00	00.00	00.00	00-00	00.0	00 0	00 0	00	00	
8	0,6 mg tr +							2000	0,00	0000	00,00	00,00	0,27
	37,5 mg al	00,00	00,00	00.00	00.00	0.00	00.00	76 0	09 0	00 0	0 00	0	
6	6,0 mg tr +						206	1460	0,0	0,00	17,0	0,00	0,00
	37,5 mg al	00,00	0,27	00,00	00.00	67.0	00.00	00 0	0 60	00 0	00 0	0	
10.	21,0 mg tr +							200	000	0000	00,00	0,09	0,21
	37,5 mg al	00,00	0000	00,00	00.00	00.00	00.00	00 0	00 0	01.1	00 0	00	0
11.	0,3 mg tr *							204	2000	7,510	00,00	00,00	7,24
	75,0 mg al	64,0	00,00	00,00	64.0	00.00	0.00	67 0	67 0	88 0	0 01	0	0
12.	0,6 mg tr +							63.60	100	00.00	0,21	0,49	0,88
	75,0 mg al	0000	0000	00,00	00.00	00.00	0.00	69 0	00 0	00 0		00	0
13.	6,0 mg tr +							5060	00,00	0,00	1,32	0000	00,00
	75,0 mg al	0000	0000	00,00	0.27	00.00	0.00	67 0	67 0	07 0	0,0	0,0	
14.	21,0 mg tr +							2160	64.60	67.0	6460	0,69	0,69
	75,0 mg al	0000	00,00	00,00	00,00	00.00	00.00	0.00	67.0	1 10	07.0	0.7.0	
15. 1	Testemunha	0000	0000	00,00	00,00	00.0	00.00	67.0	67 0	0 49	64.0	0,49	7467

CONCLUSÕES

- Os tratamentos envolvendo triadimenol isolado e em mistura com aldicarb proporcionaram maior efeito protetor quando aplicados
 dias antes da inoculação, e maior efeito curativo aos 5 dias após a inoculação.
- 2, A mistura triadimenol + aldicarb apresentou efeito sinérgico no controle da ferrugem, quando os compostos foram aplicados 5 dias antes da inoculação.
- 3, Os tratamentos com as duas maiores doses de triadimenol isolado e em mistura com aldicarb apresentaram maior eficiencia de controle tanto no ensaio preventivo como no curativo.
- 4. O aldicarb interferiu no desenvolvimento da ferrugem quando aplicado na maior dose 25 dias antes da inoculação.
- 5. Ern relação à abscisão foliar, não foi constatada diferenças significativas entre os tratamentos.

6. RESUMO

Estudou-se, sob condições controladas de uma câmara de crescimento vegetativo, o efeito preventivo e curativo do fungicida triadimenol e do inseticida aldicarb, aplicados via solo, isoladamente e em mistura, em diferentes épocas, em plantas de cafeeiro inoculadas com o fungo Hemileia vastatrix, bem como seus efeitos na abscisão foliar.

No ensaio de efeito preventivo, o triadimenol e o aldicarb foram aplicados aos 25, 15 e 5 dias antes da inoculação e no ensaio de efeito curativo os produtos foram aplicados aos 5, 15 e 25 dias após. O triadimenol de 0,3; 0,6; 6,0 e 21 mg p.a./vaso e o aldicarb nas doses 37,5 e 75,0 mg p.a./vaso foram aplicados isoladamente e em associação no soLo dos vasos, a uma profundidade de 1 cm.

Aos 30, 50, 70 e 90 dias após a inoculação, avaliou-se o número total de lesões (NTL), o número de lesões esporuladas (NLE), a razão de esporulação (RE) e a abscisão foliar.

Pelos resultados obtidos no ensaia preventivo, observa-se tratamentos com as duas maiores doses de triadimenol isolado e en mistura com aldicarb proporcionaram uma satisfatória ação preventiva à Hemileia vastatrix nas três épocas de aplicação dos produtos, e os tratamentos com as duas menores doses eficiência quando da aplicação aos 25 dias inoculação. No ensaio curativo, os tratamentos com maiores doses de triadimenol isolado e em mistura com aldicarb proporcionaram ação curativa aos 5 dias após a inoculação, e com eficiencia decrescente com o aumento do periodo de aplicação. O aldicarb proporcionou um efeito sinérgico ao triadimenol, estes foram aplicados em mistura na menor dose aos 5 dias inoculação. O aldicarb, aplicado isoladamente, interferiu desenvolvimento da ferrugem apenas quando aplicado na maior dose, aos 25 dias antes da inoculação. R incidência de abscisão ensaios preventivo e curativo foi baixa, não havendo diferenças significativas entre os tratamentos químicos etestemunha,

7. SUMMARY

EFFICIENY OF SOIL - APPLIED TRIADIMENOL AND ALDICARB, SOLELY AND MIXED, FOR COFFEE RUST CONTROL (Hemileia vastatrix)

It was investigated under controlled conditions, in a vegetative growth chamber, the preventive and curative effect of triadimenol and aldicarb, applied isolated and mixed, via soil, at different times, to coffee plants innoculated with the Hemileia vastatrix fungi.

In the preventive effect test, the compounds were applied at 25, 15 and 5 days before innoculation. In the curative effect test, application was carried out at 5, 15 and 25 days after innoculation. Granular formulations of the chemicals were applied at the depth of 1 cm, at rates of 0,3; 0,6; 6,0 and 21 mg a.i./pot for triadimenol and 37,5 and 75,0 mg a.i./pot for aldicarb.

At 30, 50, 70 and 90 days after innoculation, the total number of lesions (TNL), the number of spored lesions (NSL), the

sporing ratio (SR) and the foliar abscision were evaluated.

The results showed that the treatment with the two larger doses of isolated triadimenol and triadimenol mixed with aldicarb provided effective preventive action against Remileia vastatrix the three occasions of application of the products, treatment with the two smaller doses provided a higher efficiency when applied 25 days before innoculation. In the curative test, the treatments with the two larger doses of isolated triadimenol mixed with aldicarb, provided curative action 5 days innoculation and decreasing efficiency with the increase of the application period, The aldicarb provided a sinergistic effect to the triadimenol when these were applied mixed, at the smaller dose, 5 days before innoculation. The aldicarb, applied isolated, interfered with rust development only when applied at the larger before innoculation. The incidence of days abscision in the preventive and curative tests was low, having no significant differences between the chemical treatments and the control.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- ABREU, M.S. Resistência horizontal a <u>Hemileia vastatrix</u> Berk
 Br. em cafeeiros descendentes do Hibrido de Timor, Viçosa, UFV, 1988. 68p. (Tese Doutorado).
- 2. _____; CAMPOS, V.P. & SPILLER, P.T. Competição de fungicidas sistêmicos, veiculados em óleo mineral, puro e aplicados em dosagens diferentes, no controle da ferrugem do cafeeiro. In: CONGRESSO BRASILEIRO DE FITOPATOLOGIA, 8, Mossoró, 1974. Separata ... Mossoró, ESAM, 1974. p.90-5.
- 3. ALMEIDA, S.R. & MATIELLO, J.B. Doses de fungicida sistêmico triadimenol em duas densidades de 'plantio, na presença e ausência do inseticida dissulfoton, no controle à ferrugem do cafeeiro. In: CONGRESSO BRASILEIRO DE PESQUISAS CA-FEEIRAS, 16, Espírito Santo do Pinhal, 1990. Resumos...
 Rio de Janeiro, IBC, 1990a. p.126-27.

- 4, ALMEIDA, S.R. & MATIELLO, J.B. Doses do fungicida sistêmico triadimenol na presença e ausência do inseticida dissulfoton, no controle à ferrugem do cafeeiero. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 17, Varginha, 1991. Resumos... Rio de Janeiro, MARA/SNPA/EMBRAPA, 1991. p.86-7.
 - 5. ____& ___ Efeito de doses e formulações de fungicidas cúpricos usados no controle à ferrugem sobre a produção de cafeeiros. In:CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 16, Espírito Santo do Pinhal, 1990. Resumos... Rio de Janeiro, IBC, 1990b. p.77-8.
- 6. _______; ANDRADE, I.P.R.& ABREU, U.R.G. Avaliação de fungicidas sistêmicos, cúpricos e a base de estanho, aplicados em atomização e polvilhamento. In: CONGRESSO BRASILEIRO SOBRE PRAGAS E DOENÇAS DO CAFEEIRO, 1, Vitória, 1973. Resumos... Rio de Janeiro, IBC-GERCA, 1973a. p.15-6.

- 7. ALMEIDA, S.R. & MATIELLO, J.B.; ANDRADE, I.P.R. & ABREU, R.G. Interação dose x epoca de aplicação de fungicidas cúpricos no controle da ferrugem do cafeeiro, na Zona Sul de Minas Gerais. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 1, Vitória, 1973. Resumos... Rio de Janeiro, IBC-GERCA, 1973b. p.124-5.
- ANDREI, E. Compêndio de defensivos agricolas; guia prático de produtos fitossanitários para uso agrícola. 2.ed. São Paulo, Organização Andrei, 1987. 492p.
- 9. BANZATTO, D.A. & KRONKA, S.N. Experimentação agrícola. Jaboticabal, FUNEP, 1989. 247p.
- 10. BOCK, K.R. Control of coffee leaf rust in Kenya Colony.

 Transactions British Mycological Society, London, 45(3):
 301-13, Jun. 1962.
- 11. BORDIN, C.A.; MOCHI, E.A. & SANTINI, A, Estudo do efeito de fungicidas aplicados via solo no controle da ferrugem do cafeeiro (H. vastatrix Berk & Br.). In: CONGRESSO BRASI-LEIRO DE PESQUISAS CAFEEIRAS, 15, Maringá, 1989. Resumos,.. Rio de Janeiro, IBC-GERCA, 1989, p.64.

- 12. CAMPACCI, C.A. & OLIVEIRA, D.A. Fungicidas sistemicos para a ferrugem alaranjada do cafeeiro (Hemileia vastatrix Berk & Br.). In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 2, Pocos de Caldas, 1974. Resumos... Rio de Janeiro, IBC-GERCA, 1974. p.242-5.
- 13. CARNEIRO FILHO, F. & ISHIZAKA, A.M. Controle da ferrugem do cafeeiro com diversos fungicidas protetores, sistêmicos e em mistura com inseticidas em aplicações no solo e foliar. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 16, Espirito Santo do Pinhal, 1990. Resumos... Rio de Janeiro, IBC, 1990. p.98-9.
- 14. _____; MATIELLO, J.E. & MANSK, Z. Efeito do fungicida
 sistêmico experimental S 3308 L, no controle da ferrugem
 do cafeeiro no Estado do Pasaná. In: CONGRESSO BRASILEIRO
 DE PESQUISAS CAFEEIRAS, 12, Caxambu, 1985. Resumos...
 Rio de Janeiro, IBC-GERCA, 1985. p.106-8.
- 15. CAROL, A.P. & EDINGTON, L.V. Transport of benomyl into various plant organs. Phytopatology, St. Paul, 61(1): 91-2, Jan. 1971.

- 16. CAROL, A.P.& EDINGTON. Transport of the systemic fungicide benomyl, in bean plants. Phytopathology, St. Paul, 60(4):475-8, Mar. 1970.
- 17. CARVALHO, M.M. Café; recomendações técnicas. V. Formação de mudas. Informe Agropecuário, Belo Horizonte, 4(44): 14-18, jun. 1978.
- 18. CHALFOUN, S.M. Eficiência do fungicida sistêmico diniconazole aplicada isoladamente e em associação com oxicloreto de cobre no controle da ferrugem do cafeeiros. In:
 CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 16, Espírito Santo da Pinhal, 1990. Resumos ... Rio de Janeiro,
 IBC, 1990. p.30-1.
- 19. _____ & ZAMBOLIM, L. Ferrugem do cafeeiro. Informe

 Agropecuário, Belo Horizonte, 11(126):42-6, jun. 1985.
- 20. CRAVES, G.M.; CRUZ FILHO, J.; CARVALHO, M.G.; MATSUOKA, K.; COELHO, D.T. & SHIMOYA, C, A ferrugem do cafeeiro (Hemileia vastatrix Berk & Br.). Revisão de Literatura com observações e comentários sobre a enfermidade no Brasil. Seiva, Viçosa, 30(Especial):1-75, dez. 1970.

- 21. D'ANTONIO, A.M. Misturas de inseticidas sistêmicos com fungicidas sistêmicos, em diversas dosagens para controle da ferrugem do cafeeiro. In: CONGRESSO BRASILEIRO 'DE PESQUISAS CAFEEIRAS, 16, Espírito Santo do Pinhal. 1990.

 Resumos... Rio de Janeiro, IBC, 1990. p.92-4.
- cida sistêmico triadimenol com diversos inseticidas sistêmicos, no controle da ferrugem do cafeeiro Hemileia

 vastatrix. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEI
 RAS, 16, Espírito Santo do Pinhal, 1990. Resumos... Rio
 de Janeiro, IBC, 1990. p.99-100.
- 23. ______; MATIELLO, J.B. & FERNANDES, D.R. Eficiência

 de diversas misturas do fungicida sistêmico flutriafol

 (impact) com inseticida sistêmico forato (granutox) no

 controle a ferrugem do cafeeiro. In: CONGRESSO BRASI
 LEIRO DE PESQUISAS CAFEEIRAS, 16, Espírito Santo do

 Pinhal, 1990. Resumos... Rio de Janeiro, IBC, 1990.

 p.76-7.

- 24. DI PIETRO, C.D. & OLIVEIRA JR., L.C.C. Manejo integrado do nematóide das galhas Meloidogyne incognita utilizando variedade tolerante associada ao uso de nematicidas granulados sistêmicos de solo. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 16, Espírito Santo de Pinhal, 1990. Resumos... Rio de Janeiro, IBC, 1990. p.67.
- 25. EDINGTON, L.V.; BUCHENAUER, H. 6 GROSSMANN, F. Bioassay and transcuticular movement of systemic fungicides, Pesticide Science, Oxford, 4:747-52, Jun. 1973.
- fungicides: a perspective after 10 years. Plant

 Disease, Washington, 64(1):19-23, Jan. 1980.
- 27, FIGUEIREDO, P.; SILVEIRA, A.P. & OLIVEIRA, D.A. Avaliação de fungicidas sistêmicos aplicados via solo e em pulverização no controle da ferrugem do cafeeiro. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 17, Varginha, 1991.

 Resumos... Rio de Janeiro, MARA/SNPA/EMBRAPA, 1991.

 p.38-9.
- 28. GALLI, F., coord. Manual de fitopatologia; princípios e conceitos. 2.ed. São Paulo, Agronômica Ceres, 1978. v.1, 373p.

- 29. GUERRA NETO, E.G. & D'ANTONIO, A.M. Controle associado da ferrugem do cafeeiro R. vastatrix e do bicho mineiro do cafeeiro Perileucoptera coffeella através da aplicação conjunta de inseticida e fungicida sistêmicos. Estudos de época e dosagem. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 15, Maringá, 1989. Resumos... Rio de Janeiro, IBC-GERCA, 1989. p.168-70.
- 30. HASHIZUME, H. & MATIELLO, J.B. Diferentes processos de aplicação do fungicida sistêmico triadimefon no controle da
 ferrugem do cafeeiro. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 8, Campos do Jordão, 1980. Resumos... Rio
 de Janeiro, IBC-GERCA, 1980, p.139-40.
- 31. INSTITUTO BRASILEIRO DO 'CAFE. Cultura de café no Brasil.

 Rio de Janeiro, 1985. 373p.
- 32, KUSHALAPPA, A.C. & ESKES, A.B. Advances in coffee rust research. Annual Review of Phytopathology, Palo Alto, 27:503-31, 1989.
- 33. LAVOURA. Formas eficientes de controle de ferrugem. Dirigente Rural, São Paulo, 28(1):16-7, jan. 1989.

- 34. LORDELLO, R.R.A.; RIBEIRO, I.J.A. & RICCI JUNIOR, A. Efeito de nematicidas sistêmicos contra a ferrugem do cafeeiro (Hemileia vastatrix Berk et Br.). In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 6, Ribeirão Preto, 1978.

 Resumos... Rio de Janeiro, IBC-GERCA, 1978. p.34-6.
- 35. MANSK, 2. & MATIELLO, J.B. Doses e formulações de fungicidas e inseticidas granulados sistêmicos aplicados no solo no controle à ferrugem. In: CONGRESSO BRASILEIRO DE PESQUI-SAS CAFEEIRAS, 17, Varginha, 1991, Resumos... Rio de Janeiro, MARA/SNPA/EMBRAPA, 1991. p.75-6.
- 36. _____ & _____ Efeito de dosagens dos fungicidas

 bayleton e delan no controle à ferrugem e na produção do

 cafeeiro. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEI
 RAS, 9, São Lourenço, 1981. Resumos... Rio de Janeiro,

 IBC-GERCA, 1981. p.143-4.
- 37. _____ & _____. Efeito de doses de fungicidas

 cúpricos de baixa concentração no controle à ferrugem do

 cafeeiro. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFE
 EIRAS, 12, Caxambu, 1985. Resumos... Rio de Janeiro,

 IBC-MIC, 1985. p.109-11.

- 38. MANSK, Z. & MATIELLO, J.B. Estudo do fungicida sistêmico bayfidan, quando aplicado no solo e no tronco do cafeeiro e em pulverização visando ao controle da ferrugem (Hemileia vastatrix Berk et Br.). In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 14, Campinas, 1987. Resumos... Rio de Janeiro, 1987. p.27-8.
- 39. _____ & _____ Estudo do fungicida sistêmico bayfidan (triadimenol), quando aplicado no solo, tronco do cafeeiro e em pulverização visando a controle da ferrugem (Hemileia vastatrix). In: CONGRESSO BRASILEIRO DE PESQUISAS CAFE-EIRAS, 15, Maringá, 1989. Resumos.., Rio de Janeiro, IBC-GERCA, 1989. p.62-3.
- 40. _____ & _____ Estudos do fungicida sistêmico bayfidan (triadimenol), quando aplicado no solo, tronco do cafeeiro e em pulverização visando o controle da ferrugem (H. vastatrix, Berk et Br.). In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 16, Espírito Santo do Pinhal, 1990. Resumos... Rio de Janeiro, IBC, 1990. p.60-2.

- 41. MANSK, Z. & MATIELLO, J.B. Estudos sobre novas formulações cúpricas no controle à ferrugem do cafeeiro (H. vastatrix, Berk et Br.). In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 10, Poços de Caldas, 1983. Anais... Rio de Janeiro, MIC-IBC-GERCA, 1983. p.199-200.
- 42. _______; ANDRADE, I.P.R.; PAULINO, A & ABREU,

 R.G. Estudo do efeito protetivo, curativo e de translocação de fungicidas sistêmicos em relação ao controle
 da ferrugem do cafeeiro. In: CONGRESSO BRASILEIRO DE

 PESQUISAS CAFEEIRAS, 2, Pocos de Caldas, 1974. Resumos... Rio de Janeiro, IBC-GERCA, 1974. p.150.
- 43. MARIOTTO, P.R.; GERALDO JR, C.; SILVEIRA, A.P.; FIGUEIREDO, P.; ARRUDA, H.V. & BONINI, R. Competição de fungicidas para o controle da ferrugem do cafeeiro (Hemileia vastatrix Berk et Br.). In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 3, Curitiba, 1975. Resumos.'.. Curitiba, IBC-GERCA, 1975, p.216-7.

- 44. MATIELLO, J.B. Novos sistemas de controle à ferrugem do cafeeiro (Hemileia vastatrix) com produtos sistêmicos e integração com o controle do bicho mineiro (P. caffeella).

 In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 16,
 Espírito Santo do Pinhal, 1990. Resumos... Rio de
 Janeiro, IBC, 1990. p.49-51.
- fungicidas sistêmicos do grupo dos triazóis, no controle à ferrugem do cafeeiro. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 17, Varginha, 1991. Resumos... Rio de Janeiro, MARA/SNPA/EMBRAPA, 1991. p.05-6.
- residual do fungicida sistêmico triadimefon (Bayleton)
 aplicado via solo, no controle da ferrugem do cafeeiro.
 In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 12,
 Caxambu, 1985. Resumos., Rio de Janeiro, IBC-GERCA,
 1985. p.229-30.
- 47. ____ & MANSK, Z. Atividade do fungicida sistêmico

 triadimefon (Bayleton) via sistema radicular do cafeeiro,
 no controle à ferrugem. In: CONGRESSO BRASILEIRO DE PES-.

 QUISAS CAFEEIRAS, 7, Araxá, 1979. Resumos... Rio de Janeiro, MIC-IBC-GERCA, 1979. p.180-1.

- 48. MATIELLO, J.B.; PINHEIRO, M.R. & FERREIRA, J.P. Controle da ferrugem do cafeeiro com diversos fungicidas, protetores e sistêmicos, com aplicações no solo, tronco e foliar. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 15, Maringá, 1989. Resumos... Maringá, MIC-IBC, 1989. p.6-8.
- 49. MIGUEL, A.E; HASHIZUME, H.; MATIELLO, J.B. & MANSK, Z. Baixa dosagem de fungicidas cúpricos, aplicados a baixa volume, no controle da ferrugem do cafeeiro. In: CONGRESSO BRALEIRO DE PESQUISAS CAFEEIRAS, 7, Araxá, 1979. Resumos...

 Rio de Janeiro, MIC-IBC-GERCA, 1979. p.243-5.

 1979. p.243-5.
- 50. MIGUEL, A.E. & MATIELLO, J.B. Estudo do comportamento do fungicida sistêmico Bayleton aplicado no solo em diversas doses e em diferentes épacas. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 9, São Lourenço, 1991. Resumos...

 Rio de Janeiro. IBC-GERCA, 1981. p. 52-3.
- 51. MUTHAPPA, B.N. Field efficacy of Bayleton 25 EC fer control of coffee leaf rust. Journal of Coffee Research, Washington, 11(1):4-6, 1981.
- Indian Coffee, India, 45(1):1-2, Jan. 1981.

- 53. MUTHAPPA, B.N. & KUMARI, K.N. Comparative efficacy of four fungicides for control of coffee rust in South India.

 Plant Disease Report, Washington, 60(10):879-83, Oct.

 1978.
- 54. NUNES, A.M.L. Tempo de absorção, efeito protetor, curativo e de translocação de fungicidas no controle da ferrugem do cafeeiro (Hemileia vastatrix Berk. h Br.). Viçosa, UFV, 1986. 91p. (Tese MS).
- 55. PAULINI, A.E.; D'ANTONIO, A.M.; GUIMARÃES, P.M. & FERREIRA,
 A.J. Teste de inseticidas granulados sistêmicos no controle do bicho mineiro do café Perileucoptera coffeella.
 In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 12, Caxambu, 1985. Resumos... Rio de Janeiro, IBC-GERCA,
 1985. p.22-3.
- 56. RAJENDRAN, C. & NATARAJ, T. Use of sistemic fungicides in coffee with special references to leaf rust. Indian Coffee, India, 47(7):13-4, Jul. 1983.

- 57. REIS, G.N.; MIGUEL, A.E. & PEREIRA, J.E. Comportamento dos cultivares mundo novo, catuaí e catimor em relação à aplicação de fungicida cúprico aplicado isoladamente ou em mistura com triadimefon + benomyl. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 15, Maringá, 1989.

 Resumos... Rio de Janeiro, MIC-IBC, 1989. p.30-2.
- 58. REZENDE, A.P. Café; nova solução para dois sérios problemas.

 Correio Agricola Bayer, São Paulo, (2):6-7, 1989.
- 59. RODRIGUEZ JR, C.J. Coffee rust: history, taxonomy, morphology, distribuition and host resistance. Fitopatologia

 Brasileira, Brasilia, 15(1):p.5-8, mar. 1990.
- 60. ROMEIRO, R. S. Germinação e poder infectivo dos uredosporos de <u>Hemileia vastatrix</u> Berk et Br. mantidos sobre diferentes produtos vegetais e o suscetivel. Viçosa, UFV, 1971.
 41p. (Tese MS).
- 61. SACCAS, A.M. & CHARPENTIER. La rouille des caféirs due à <u>Hemileia vastatrix</u>. Paris, Institut Français du Café et du Cacao, 1971, 123p. (Bulletin, 10).

- 62. SANTINI, A. Estudo do efeito de fungicidas no controle da ferrugem do cafeeiro. Fitopatologia Brasileira, Recife, 14(2):148, jul. 1989.
- 63. SCHIEBER, E. Economic impact of coffee rust in Latin

 America. Annual Review of Phytopathology, Palo Alto, 10:
 491-510, 1972.
- 64. _____ & LEON, A.S. First report of coffee rust in Guate-mala. Plant Disease, Washington, 66(9):855-6, Sept.
- 65. _____ & ZENTMYER, G.R. Coffee rust in the western

 hemisphere. Plant Disease, Washington, 68(2):89-93, Feb.

 1984.
- 66. SOLEL, Z.; SANDLER, D. & DINOOR, A. A mobility and persistence of carbendazin and thiabendazole applied to soil via drip irrigation. Phytopathology, St. Paul, 69(12):1273-7, Dec. 1979.
- 67. SOUZA, M.T. Ação protetora e curativa dos compostos triadimenol e aldicarb em mudas de cafeeiro no controle da ferrugem causada pox Remileia vastatrix. Lavras, ESAL, 1991. 76p. (Tese MS).

- 68. UEHARA, C.& BETTIOL, W. Efeito de aldicarb sobre a germinação de uredosporos de H. vastatrix. Fitopatologia Brasileira, Recife, 14(2):134, jul. 1989a. (Resumo),
- 69. _____ & ____ Efeito da aplicação de adicarb sobre o desenvolvimento da ferrugem do cafeeiro (H. vastatrix).

 Fitopatologia Brasileira, Recife, 14(2):134 jul. 1989b.

 (Resumos).
- 70. VASQUEZ, G.F. Coffee rust in Mexico. Plant Disease, Wa-shington, 67(4):450, June 1983.
- 71. WALLER, J.M. The recent spread of some tropical plant diseases. Tropical Pest Management, London, 27(3): 360-2, Sept. 1981.
- 72. WELLMAN, F.L. & ECHANDI, E. The coffee rust situation in Latin America in 1980. Phytopathology, St. Paul, 71(9):968-71, Sept. 1981.
- 73. WORTHING, C.R. The pesticide manual; a world compendium.
 6.ed. London, BCPB, Publications, 1979. 655p.

34. ZAMBOLIM, Z.; VALE, F.X.R.; COELHO, J.A.; PEREIRA, A.A.&

CHAVES, G.M. Persistência de triadimenol en plantas de

cafeeiro e solo visando o controle de Hemileia vastatrix

Berk & Br. Fitopatologia Brasileira, Recife, 14(2):149,

jul. 1989.

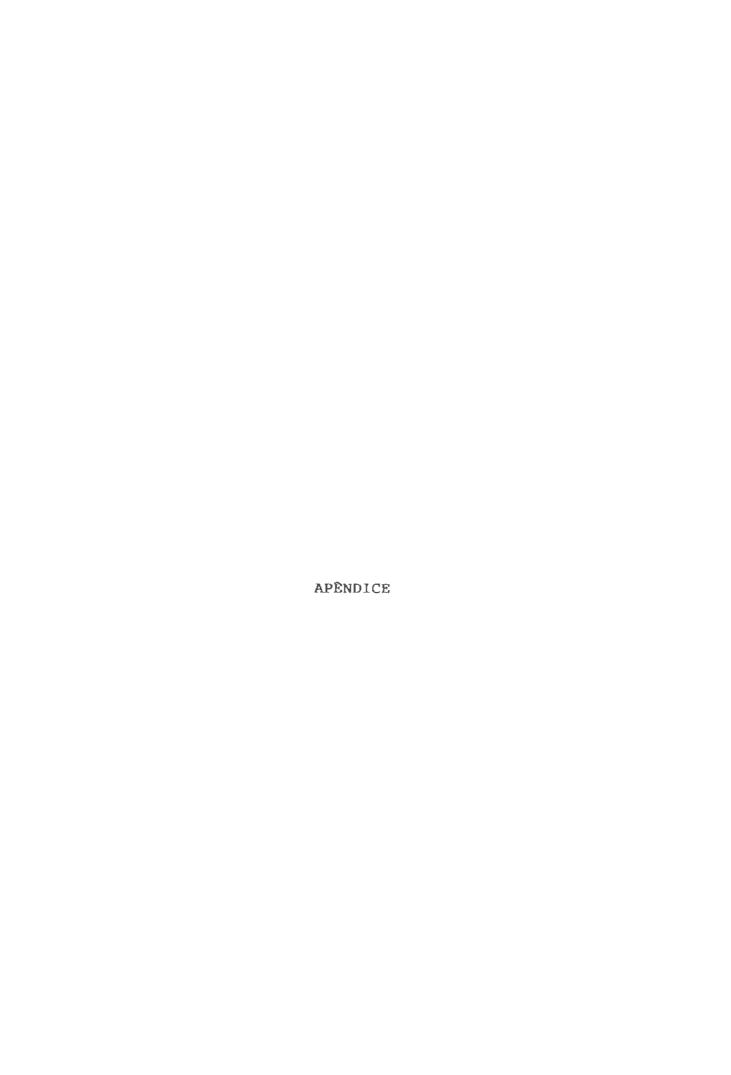


TABELA 1A. Resumo da análise de variância do efeito preventivo do fungicida triadimenol e do inseticida aldicarb em plantas de cafeeiro inoculadas com Hemileia vastatrix aos 5, 15 e 25 dias após a aplicação dos compostos no solo - ESAL, Lavras - MG., 1992.

Quadrados Medios 1/

Varíáveis	(A) Epoca	(B) Tratamento	АхВ	Residuo	c.v.(%)			
NLE 30	0,000 NS	0,000 NS	0,000 NS	0,000	0,000			
NTL 30	2,309 NS	2,735 *	0,463 NS	0,865	69,955			
RE 30	0,000 NS	0,000 NS	0,000 NS	0,000	0,000			
ABS 30	0,001 NS	0,003 NS	0,004 NS	0,003	8,815			
NLE 50	0,018 NS	0,500 *	0,051 NS	0,040	24,875			
NTL 50	3,498 *	3,255 *	0,688 NS	0,893	30,213			
RE 50	0,000 NS	0,003 *	0,001 NS	0,000	3,757			
ABS 50	0,010 NS	0,012 NS	0,019 NS	0,019	18,870			
NLE 70	0,002 NS	0,803 *	0,091*	0,053	26,399			
NTL 70	0,801 NS	4,545	0,452 NS	0,863	33,717			
RE 70	0,000 NS	0,007 **	0,002 *	0,000	4,178			
ABS 70	0,038 NS	0,074 NÇ	0,042 NS	0,048	27,840			
NLE 90	0,203 *	0,753 *	0,075 NS	0,047	24,022			
NTL ?O	5,323 *	4,338 *	0,645 NS	1,011	42,359			
RE 90	0,006 *	0,014 *	0,003 *	0,0'02	6,089			
ABS 90	0,044 NS	0,201 *	0,080 NS	0,090	35,209			

^{*} Significativo pelo teste de F, ao nível de 5% de probabilidade.

NS Não significativo pelo teste de F, ao nível de 5% de probabilidade.

^{1/} Dados transformados em $\sqrt{x} + 0.5$.

TABELA 2A, Resumo da análise de variancia do efeito curativo do fungicida triadimenol e do inseticida aldicarb plantas de cafeeiro inoculadas com Hemileia vastatrix aos 5, 15 e 25 dias antes da aplicação dos compostos no solo - ESAL, Lavras - ME., 1992.

	quadrados Medios <u>r</u> 7						
Varíaveis	(A) Época	(B) Tratamento	А ж В	Residuo	C.V.(%)		
NLE 30	0,064 NS	0,273 *	0,159 NS	0, 120	41,089		
NTL 30	2,760 NS	3,159 *	0,628 NS	1,059	32,925		
RE 30	0,002 NS	0,003 NS	0,003 NS	0,002	7,270		
ABS 30	0,004 NS	0,007 NS	0,007 NS	0, 007	12,186		
NLE 50	0,343 NS	0,605 *	0,382 NS	0,313	53,624		
NTL 50	5,640 *	2,496 *	0,582 NS	1,117	37,626		
RE 50	0,014 NS	0,012 NS	0,008 NS	0, 009	12,730		
ABS 50	0,004 NS	0,012 NS	0,016 NS	0,015	16,999		
NLE 70	0,568 NS	1,442 *	0,541 NS	0 <i>,430</i>	55, 256		
NTL 70	0,531 NS	1,446 NS	0,806 NS	1,051	38,250		
RE 70	0,057	0,049 *	0,015 NS	0,012	13,853		
ABS 70	0,148 NS	0,129 NS	0,082 NS	0,116	40,205		
NLE 90	0,602 NS	1,459 *	0,377 NS	0,433	53,634		
NTL 90	0,511 NS	1,348 NS	0,657 NS	1,254	49,007		
RE SO	0,062 *	0,095 *	0,021 NS	0,019	16,658		
ABS 90	0,496 * Depoca = 2	. 0, 204 NS (B) Tratamento	0,152 NS = 14 A x	0, 163 B = 28 Res	43,286		

Significativo pelo teste de F, ao nivel de 5% de probabilidade.

SS não significativo pelo teste de F, ao nivel de 5% de probabilidade. $1/\sqrt{x+0.5}$